Enter a problem...
Algebra Examples
Step 1
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Subtract from .
Step 2.2.1.1.2
Rewrite as .
Step 2.2.1.1.3
Expand using the FOIL Method.
Step 2.2.1.1.3.1
Apply the distributive property.
Step 2.2.1.1.3.2
Apply the distributive property.
Step 2.2.1.1.3.3
Apply the distributive property.
Step 2.2.1.1.4
Simplify and combine like terms.
Step 2.2.1.1.4.1
Simplify each term.
Step 2.2.1.1.4.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.1.1.4.1.2
Multiply by by adding the exponents.
Step 2.2.1.1.4.1.2.1
Move .
Step 2.2.1.1.4.1.2.2
Multiply by .
Step 2.2.1.1.4.1.3
Multiply by .
Step 2.2.1.1.4.1.4
Multiply by .
Step 2.2.1.1.4.1.5
Multiply by .
Step 2.2.1.1.4.1.6
Multiply by .
Step 2.2.1.1.4.2
Add and .
Step 2.2.1.2
Add and .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Combine the opposite terms in .
Step 3.2.1
Subtract from .
Step 3.2.2
Add and .
Step 3.3
Factor out of .
Step 3.3.1
Factor out of .
Step 3.3.2
Factor out of .
Step 3.3.3
Factor out of .
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to .
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Subtract from both sides of the equation.
Step 3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8