Enter a problem...
Algebra Examples
2x+5(x-8)(2x+1)=ax-8+b2x+12x+5(x−8)(2x+1)=ax−8+b2x+1
Step 1
Rewrite the equation as ax-8+b2x+1=2x+5(x-8)(2x+1)ax−8+b2x+1=2x+5(x−8)(2x+1).
ax-8+b2x+1=2x+5(x-8)(2x+1)ax−8+b2x+1=2x+5(x−8)(2x+1)
Step 2
Step 2.1
Subtract 2x+5(x-8)(2x+1)2x+5(x−8)(2x+1) from both sides of the equation.
ax-8+b2x+1-2x+5(x-8)(2x+1)=0ax−8+b2x+1−2x+5(x−8)(2x+1)=0
Step 2.2
To write ax-8ax−8 as a fraction with a common denominator, multiply by 2x+12x+12x+12x+1.
ax-8⋅2x+12x+1+b2x+1-2x+5(x-8)(2x+1)=0ax−8⋅2x+12x+1+b2x+1−2x+5(x−8)(2x+1)=0
Step 2.3
To write b2x+1b2x+1 as a fraction with a common denominator, multiply by x-8x-8x−8x−8.
ax-8⋅2x+12x+1+b2x+1⋅x-8x-8-2x+5(x-8)(2x+1)=0ax−8⋅2x+12x+1+b2x+1⋅x−8x−8−2x+5(x−8)(2x+1)=0
Step 2.4
Write each expression with a common denominator of (x-8)(2x+1)(x−8)(2x+1), by multiplying each by an appropriate factor of 11.
Step 2.4.1
Multiply ax-8ax−8 by 2x+12x+12x+12x+1.
a(2x+1)(x-8)(2x+1)+b2x+1⋅x-8x-8-2x+5(x-8)(2x+1)=0a(2x+1)(x−8)(2x+1)+b2x+1⋅x−8x−8−2x+5(x−8)(2x+1)=0
Step 2.4.2
Multiply b2x+1b2x+1 by x-8x-8x−8x−8.
a(2x+1)(x-8)(2x+1)+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=0a(2x+1)(x−8)(2x+1)+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.4.3
Reorder the factors of (x-8)(2x+1)(x−8)(2x+1).
a(2x+1)(2x+1)(x-8)+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=0a(2x+1)(2x+1)(x−8)+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
a(2x+1)(2x+1)(x-8)+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=0a(2x+1)(2x+1)(x−8)+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.5
Combine the numerators over the common denominator.
a(2x+1)+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=0a(2x+1)+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.6
Simplify the numerator.
Step 2.6.1
Apply the distributive property.
a(2x)+a⋅1+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=0a(2x)+a⋅1+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.6.2
Rewrite using the commutative property of multiplication.
2ax+a⋅1+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=02ax+a⋅1+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.6.3
Multiply aa by 11.
2ax+a+b(x-8)(2x+1)(x-8)-2x+5(x-8)(2x+1)=02ax+a+b(x−8)(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.6.4
Apply the distributive property.
2ax+a+bx+b⋅-8(2x+1)(x-8)-2x+5(x-8)(2x+1)=02ax+a+bx+b⋅−8(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.6.5
Move -8−8 to the left of bb.
2ax+a+bx-8b(2x+1)(x-8)-2x+5(x-8)(2x+1)=02ax+a+bx−8b(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
2ax+a+bx-8b(2x+1)(x-8)-2x+5(x-8)(2x+1)=02ax+a+bx−8b(2x+1)(x−8)−2x+5(x−8)(2x+1)=0
Step 2.7
Reorder the factors of (x-8)(2x+1)(x−8)(2x+1).
2ax+a+bx-8b(2x+1)(x-8)-2x+5(2x+1)(x-8)=02ax+a+bx−8b(2x+1)(x−8)−2x+5(2x+1)(x−8)=0
Step 2.8
Combine the numerators over the common denominator.
2ax+a+bx-8b-(2x+5)(2x+1)(x-8)=0
Step 2.9
Simplify the numerator.
Step 2.9.1
Apply the distributive property.
2ax+a+bx-8b-(2x)-1⋅5(2x+1)(x-8)=0
Step 2.9.2
Multiply 2 by -1.
2ax+a+bx-8b-2x-1⋅5(2x+1)(x-8)=0
Step 2.9.3
Multiply -1 by 5.
2ax+a+bx-8b-2x-5(2x+1)(x-8)=0
2ax+a+bx-8b-2x-5(2x+1)(x-8)=0
2ax+a+bx-8b-2x-5(2x+1)(x-8)=0
Step 3
Set the numerator equal to zero.
2ax+a+bx-8b-2x-5=0
Step 4
Step 4.1
Move all terms not containing a to the right side of the equation.
Step 4.1.1
Subtract bx from both sides of the equation.
2ax+a-8b-2x-5=-bx
Step 4.1.2
Add 8b to both sides of the equation.
2ax+a-2x-5=-bx+8b
Step 4.1.3
Add 2x to both sides of the equation.
2ax+a-5=-bx+8b+2x
Step 4.1.4
Add 5 to both sides of the equation.
2ax+a=-bx+8b+2x+5
2ax+a=-bx+8b+2x+5
Step 4.2
Factor a out of 2ax+a.
Step 4.2.1
Factor a out of 2ax.
a(2x)+a=-bx+8b+2x+5
Step 4.2.2
Raise a to the power of 1.
a(2x)+a=-bx+8b+2x+5
Step 4.2.3
Factor a out of a1.
a(2x)+a⋅1=-bx+8b+2x+5
Step 4.2.4
Factor a out of a(2x)+a⋅1.
a(2x+1)=-bx+8b+2x+5
a(2x+1)=-bx+8b+2x+5
Step 4.3
Divide each term in a(2x+1)=-bx+8b+2x+5 by 2x+1 and simplify.
Step 4.3.1
Divide each term in a(2x+1)=-bx+8b+2x+5 by 2x+1.
a(2x+1)2x+1=-bx2x+1+8b2x+1+2x2x+1+52x+1
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of 2x+1.
Step 4.3.2.1.1
Cancel the common factor.
a(2x+1)2x+1=-bx2x+1+8b2x+1+2x2x+1+52x+1
Step 4.3.2.1.2
Divide a by 1.
a=-bx2x+1+8b2x+1+2x2x+1+52x+1
a=-bx2x+1+8b2x+1+2x2x+1+52x+1
a=-bx2x+1+8b2x+1+2x2x+1+52x+1
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Combine into one fraction.
Step 4.3.3.1.1
Move the negative in front of the fraction.
a=-bx2x+1+8b2x+1+2x2x+1+52x+1
Step 4.3.3.1.2
Combine the numerators over the common denominator.
a=-bx+8b2x+1+2x2x+1+52x+1
a=-bx+8b2x+1+2x2x+1+52x+1
Step 4.3.3.2
Simplify the numerator.
Step 4.3.3.2.1
Factor b out of -bx+8b.
Step 4.3.3.2.1.1
Factor b out of -bx.
a=b(-1x)+8b2x+1+2x2x+1+52x+1
Step 4.3.3.2.1.2
Factor b out of 8b.
a=b(-1x)+b⋅82x+1+2x2x+1+52x+1
Step 4.3.3.2.1.3
Factor b out of b(-1x)+b⋅8.
a=b(-1x+8)2x+1+2x2x+1+52x+1
a=b(-1x+8)2x+1+2x2x+1+52x+1
Step 4.3.3.2.2
Rewrite -1x as -x.
a=b(-x+8)2x+1+2x2x+1+52x+1
a=b(-x+8)2x+1+2x2x+1+52x+1
Step 4.3.3.3
Combine the numerators over the common denominator.
a=b(-x+8)+2x2x+1+52x+1
Step 4.3.3.4
Simplify the numerator.
Step 4.3.3.4.1
Apply the distributive property.
a=b(-x)+b⋅8+2x2x+1+52x+1
Step 4.3.3.4.2
Rewrite using the commutative property of multiplication.
a=-bx+b⋅8+2x2x+1+52x+1
Step 4.3.3.4.3
Move 8 to the left of b.
a=-bx+8b+2x2x+1+52x+1
a=-bx+8b+2x2x+1+52x+1
Step 4.3.3.5
Simplify terms.
Step 4.3.3.5.1
Combine the numerators over the common denominator.
a=-bx+8b+2x+52x+1
Step 4.3.3.5.2
Factor -1 out of -bx.
a=-(bx)+8b+2x+52x+1
Step 4.3.3.5.3
Factor -1 out of 8b.
a=-(bx)-(-8b)+2x+52x+1
Step 4.3.3.5.4
Factor -1 out of -(bx)-(-8b).
a=-(bx-8b)+2x+52x+1
Step 4.3.3.5.5
Factor -1 out of 2x.
a=-(bx-8b)-(-2x)+52x+1
Step 4.3.3.5.6
Factor -1 out of -(bx-8b)-(-2x).
a=-(bx-8b-2x)+52x+1
Step 4.3.3.5.7
Rewrite 5 as -1(-5).
a=-(bx-8b-2x)-1(-5)2x+1
Step 4.3.3.5.8
Factor -1 out of -(bx-8b-2x)-1(-5).
a=-(bx-8b-2x-5)2x+1
Step 4.3.3.5.9
Simplify the expression.
Step 4.3.3.5.9.1
Rewrite -(bx-8b-2x-5) as -1(bx-8b-2x-5).
a=-1(bx-8b-2x-5)2x+1
Step 4.3.3.5.9.2
Move the negative in front of the fraction.
a=-bx-8b-2x-52x+1
a=-bx-8b-2x-52x+1
a=-bx-8b-2x-52x+1
a=-bx-8b-2x-52x+1
a=-bx-8b-2x-52x+1
a=-bx-8b-2x-52x+1