Enter a problem...
Algebra Examples
Step 1
Rewrite the equation as .
Step 2
Step 2.1
Apply the product rule to .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.3
Factor.
Step 2.3.1
Factor out of .
Step 2.3.1.1
Factor out of .
Step 2.3.1.2
Factor out of .
Step 2.3.1.3
Factor out of .
Step 2.3.2
Remove unnecessary parentheses.
Step 2.4
Multiply by .
Step 2.5
Raise to the power of .
Step 2.6
Factor out of .
Step 2.7
Factor out of .
Step 2.8
Separate fractions.
Step 2.9
Divide by .
Step 2.10
Combine and .
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2
The LCM of one and any expression is the expression.
Step 4
Step 4.1
Multiply each term in by .
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of .
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Rewrite the expression.
Step 4.3
Simplify the right side.
Step 4.3.1
Expand using the FOIL Method.
Step 4.3.1.1
Apply the distributive property.
Step 4.3.1.2
Apply the distributive property.
Step 4.3.1.3
Apply the distributive property.
Step 4.3.2
Simplify and combine like terms.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Multiply by .
Step 4.3.2.1.2
Multiply by .
Step 4.3.2.1.3
Multiply by .
Step 4.3.2.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.2.1.5
Multiply by by adding the exponents.
Step 4.3.2.1.5.1
Move .
Step 4.3.2.1.5.2
Multiply by .
Step 4.3.2.1.6
Multiply by .
Step 4.3.2.2
Subtract from .
Step 4.3.3
Apply the distributive property.
Step 4.3.4
Simplify.
Step 4.3.4.1
Multiply by .
Step 4.3.4.2
Multiply by .
Step 4.3.4.3
Multiply by .
Step 4.3.5
Simplify each term.
Step 4.3.5.1
Move the decimal point in to the left by places and increase the power of by .
Step 4.3.5.2
Move the decimal point in to the left by places and increase the power of by .
Step 4.3.5.3
Move the decimal point in to the left by places and increase the power of by .
Step 4.3.6
Reorder factors in .
Step 5
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Simplify each term.
Step 5.2.1
Rewrite the expression using the negative exponent rule .
Step 5.2.2
Multiply .
Step 5.2.2.1
Combine and .
Step 5.2.2.2
Combine and .
Step 5.2.3
Move to the left of .
Step 5.2.4
Move the negative in front of the fraction.
Step 5.2.5
Factor out of .
Step 5.2.6
Factor out of .
Step 5.2.7
Separate fractions.
Step 5.2.8
Divide by .
Step 5.2.9
Divide by .
Step 5.2.10
Multiply by .
Step 5.2.11
Rewrite the expression using the negative exponent rule .
Step 5.2.12
Multiply .
Step 5.2.12.1
Combine and .
Step 5.2.12.2
Combine and .
Step 5.2.13
Move to the left of .
Step 5.2.14
Factor out of .
Step 5.2.15
Factor out of .
Step 5.2.16
Separate fractions.
Step 5.2.17
Divide by .
Step 5.2.18
Divide by .
Step 5.3
Move all terms containing to the left side of the equation.
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Subtract from .
Step 5.4
Factor the left side of the equation.
Step 5.4.1
Factor out of .
Step 5.4.1.1
Reorder the expression.
Step 5.4.1.1.1
Move .
Step 5.4.1.1.2
Reorder and .
Step 5.4.1.2
Factor out of .
Step 5.4.1.3
Factor out of .
Step 5.4.1.4
Factor out of .
Step 5.4.1.5
Factor out of .
Step 5.4.1.6
Factor out of .
Step 5.4.2
Move the decimal point in to the left by places and increase the power of by .
Step 5.4.3
Reorder terms.
Step 5.4.4
Factor.
Step 5.4.4.1
Rewrite in a factored form.
Step 5.4.4.1.1
Factor out of .
Step 5.4.4.1.1.1
Factor out of .
Step 5.4.4.1.1.2
Factor out of .
Step 5.4.4.1.1.3
Factor out of .
Step 5.4.4.1.1.4
Factor out of .
Step 5.4.4.1.1.5
Factor out of .
Step 5.4.4.1.2
Move the decimal point in to the left by places and increase the power of by .
Step 5.4.4.1.3
Reorder terms.
Step 5.4.4.1.4
Factor.
Step 5.4.4.1.4.1
Rewrite in a factored form.
Step 5.4.4.1.4.1.1
Factor out of .
Step 5.4.4.1.4.1.1.1
Factor out of .
Step 5.4.4.1.4.1.1.2
Factor out of .
Step 5.4.4.1.4.1.1.3
Factor out of .
Step 5.4.4.1.4.1.1.4
Factor out of .
Step 5.4.4.1.4.1.1.5
Factor out of .
Step 5.4.4.1.4.1.2
Let . Substitute for all occurrences of .
Step 5.4.4.1.4.1.2.1
Raise to the power of .
Step 5.4.4.1.4.1.2.2
Move to the left of .
Step 5.4.4.1.4.1.3
Factor out of .
Step 5.4.4.1.4.1.3.1
Factor out of .
Step 5.4.4.1.4.1.3.2
Factor out of .
Step 5.4.4.1.4.1.3.3
Factor out of .
Step 5.4.4.1.4.1.3.4
Factor out of .
Step 5.4.4.1.4.1.3.5
Factor out of .
Step 5.4.4.1.4.1.4
Replace all occurrences of with .
Step 5.4.4.1.4.1.5
Factor.
Step 5.4.4.1.4.1.5.1
Reorder terms.
Step 5.4.4.1.4.1.5.2
Remove unnecessary parentheses.
Step 5.4.4.1.4.1.6
Multiply by .
Step 5.4.4.1.4.2
Remove unnecessary parentheses.
Step 5.4.4.1.5
Multiply by .
Step 5.4.4.2
Remove unnecessary parentheses.
Step 5.4.5
Multiply by .
Step 5.5
Divide each term in by and simplify.
Step 5.5.1
Divide each term in by .
Step 5.5.2
Simplify the left side.
Step 5.5.2.1
Cancel the common factor of .
Step 5.5.2.1.1
Cancel the common factor.
Step 5.5.2.1.2
Divide by .
Step 5.5.3
Simplify the right side.
Step 5.5.3.1
Divide by .
Step 5.6
Use the quadratic formula to find the solutions.
Step 5.7
Substitute the values , , and into the quadratic formula and solve for .
Step 5.8
Simplify.
Step 5.8.1
Simplify the numerator.
Step 5.8.1.1
Raise to the power of .
Step 5.8.1.2
Multiply .
Step 5.8.1.2.1
Multiply by .
Step 5.8.1.2.2
Multiply by .
Step 5.8.1.3
Add and .
Step 5.8.1.4
Rewrite as .
Step 5.8.1.4.1
Factor out of .
Step 5.8.1.4.2
Rewrite as .
Step 5.8.1.5
Pull terms out from under the radical.
Step 5.8.2
Multiply by .
Step 5.8.3
Simplify .
Step 5.9
The final answer is the combination of both solutions.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: