Enter a problem...
Algebra Examples
√15n2⋅√10n3√15n2⋅√10n3
Step 1
Reorder 1515 and n2n2.
√n2⋅15⋅√10n3√n2⋅15⋅√10n3
Step 2
Pull terms out from under the radical.
|n|√15⋅√10n3|n|√15⋅√10n3
Step 3
Step 3.1
Factor out n2n2.
|n|√15⋅√10(n2n)|n|√15⋅√10(n2n)
Step 3.2
Reorder 1010 and n2n2.
|n|√15⋅√n2⋅10n|n|√15⋅√n2⋅10n
Step 3.3
Add parentheses.
|n|√15⋅√n2⋅(10n)|n|√15⋅√n2⋅(10n)
|n|√15⋅√n2⋅(10n)|n|√15⋅√n2⋅(10n)
Step 4
Pull terms out from under the radical.
|n|√15⋅(|n|√10n)|n|√15⋅(|n|√10n)
Step 5
Step 5.1
To multiply absolute values, multiply the terms inside each absolute value.
|n⋅n|√15√10n|n⋅n|√15√10n
Step 5.2
Raise nn to the power of 11.
|n1n|√15√10n∣∣n1n∣∣√15√10n
Step 5.3
Raise nn to the power of 11.
|n1n1|√15√10n∣∣n1n1∣∣√15√10n
Step 5.4
Use the power rule aman=am+naman=am+n to combine exponents.
|n1+1|√15√10n∣∣n1+1∣∣√15√10n
Step 5.5
Add 11 and 11.
|n2|√15√10n∣∣n2∣∣√15√10n
Step 5.6
Combine using the product rule for radicals.
|n2|√10n⋅15∣∣n2∣∣√10n⋅15
Step 5.7
Multiply 1515 by 1010.
|n2|√150n∣∣n2∣∣√150n
|n2|√150n∣∣n2∣∣√150n
Step 6
Remove non-negative terms from the absolute value.
n2√150nn2√150n
Step 7
Step 7.1
Factor 2525 out of 150150.
n2√25(6)nn2√25(6)n
Step 7.2
Rewrite 2525 as 5252.
n2√52⋅6nn2√52⋅6n
Step 7.3
Add parentheses.
n2√52⋅(6n)n2√52⋅(6n)
n2√52⋅(6n)n2√52⋅(6n)
Step 8
Pull terms out from under the radical.
n2(|5|√6n)n2(|5|√6n)
Step 9
Rewrite using the commutative property of multiplication.
|5|n2√6n|5|n2√6n
Step 10
The absolute value is the distance between a number and zero. The distance between 00 and 55 is 55.
5n2√6n5n2√6n