Algebra Examples

Simplify the Radical Expression square root of 15n^2* square root of 10n^3
15n210n315n210n3
Step 1
Reorder 1515 and n2n2.
n21510n3n21510n3
Step 2
Pull terms out from under the radical.
|n|1510n3|n|1510n3
Step 3
Rewrite 10n310n3 as n2(10n)n2(10n).
Tap for more steps...
Step 3.1
Factor out n2n2.
|n|1510(n2n)|n|1510(n2n)
Step 3.2
Reorder 1010 and n2n2.
|n|15n210n|n|15n210n
Step 3.3
Add parentheses.
|n|15n2(10n)|n|15n2(10n)
|n|15n2(10n)|n|15n2(10n)
Step 4
Pull terms out from under the radical.
|n|15(|n|10n)|n|15(|n|10n)
Step 5
Multiply |n|15(|n|10n)|n|15(|n|10n).
Tap for more steps...
Step 5.1
To multiply absolute values, multiply the terms inside each absolute value.
|nn|1510n|nn|1510n
Step 5.2
Raise nn to the power of 11.
|n1n|1510nn1n1510n
Step 5.3
Raise nn to the power of 11.
|n1n1|1510nn1n11510n
Step 5.4
Use the power rule aman=am+naman=am+n to combine exponents.
|n1+1|1510nn1+11510n
Step 5.5
Add 11 and 11.
|n2|1510nn21510n
Step 5.6
Combine using the product rule for radicals.
|n2|10n15n210n15
Step 5.7
Multiply 1515 by 1010.
|n2|150nn2150n
|n2|150nn2150n
Step 6
Remove non-negative terms from the absolute value.
n2150nn2150n
Step 7
Rewrite 150n150n as 52(6n)52(6n).
Tap for more steps...
Step 7.1
Factor 2525 out of 150150.
n225(6)nn225(6)n
Step 7.2
Rewrite 2525 as 5252.
n2526nn2526n
Step 7.3
Add parentheses.
n252(6n)n252(6n)
n252(6n)n252(6n)
Step 8
Pull terms out from under the radical.
n2(|5|6n)n2(|5|6n)
Step 9
Rewrite using the commutative property of multiplication.
|5|n26n|5|n26n
Step 10
The absolute value is the distance between a number and zero. The distance between 00 and 55 is 55.
5n26n5n26n
 [x2  12  π  xdx ]  x2  12  π  xdx