Enter a problem...
Algebra Examples
Simplify
Step 1
To divide by a fraction, multiply by its reciprocal.
Step 2
Step 2.1
Factor out of .
Step 2.1.1
Factor out of .
Step 2.1.2
Factor out of .
Step 2.1.3
Factor out of .
Step 2.2
Rewrite as .
Step 2.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3
Step 3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.2
Write the factored form using these integers.
Step 4
Step 4.1
Cancel the common factor.
Step 4.2
Rewrite the expression.
Step 5
Step 5.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.2
Write the factored form using these integers.
Step 6
Step 6.1
Factor out of .
Step 6.1.1
Factor out of .
Step 6.1.2
Factor out of .
Step 6.1.3
Factor out of .
Step 6.1.4
Factor out of .
Step 6.1.5
Factor out of .
Step 6.2
Factor using the AC method.
Step 6.2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 6.2.2
Write the factored form using these integers.
Step 7
Step 7.1
Cancel the common factor of .
Step 7.1.1
Factor out of .
Step 7.1.2
Cancel the common factor.
Step 7.1.3
Rewrite the expression.
Step 7.2
Cancel the common factor of .
Step 7.2.1
Factor out of .
Step 7.2.2
Cancel the common factor.
Step 7.2.3
Rewrite the expression.
Step 7.3
Combine and .