Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Divide by .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Add and .
Step 2.2.1.1.2
Rewrite as .
Step 2.2.1.1.3
Expand using the FOIL Method.
Step 2.2.1.1.3.1
Apply the distributive property.
Step 2.2.1.1.3.2
Apply the distributive property.
Step 2.2.1.1.3.3
Apply the distributive property.
Step 2.2.1.1.4
Simplify and combine like terms.
Step 2.2.1.1.4.1
Simplify each term.
Step 2.2.1.1.4.1.1
Multiply .
Step 2.2.1.1.4.1.1.1
Multiply by .
Step 2.2.1.1.4.1.1.2
Raise to the power of .
Step 2.2.1.1.4.1.1.3
Raise to the power of .
Step 2.2.1.1.4.1.1.4
Use the power rule to combine exponents.
Step 2.2.1.1.4.1.1.5
Add and .
Step 2.2.1.1.4.1.1.6
Multiply by .
Step 2.2.1.1.4.1.2
Combine and .
Step 2.2.1.1.4.1.3
Move to the left of .
Step 2.2.1.1.4.1.4
Combine and .
Step 2.2.1.1.4.1.5
Multiply by .
Step 2.2.1.1.4.2
Add and .
Step 2.2.1.1.5
Cancel the common factor of .
Step 2.2.1.1.5.1
Cancel the common factor.
Step 2.2.1.1.5.2
Rewrite the expression.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Add and .
Step 2.2.1.5.1
Reorder and .
Step 2.2.1.5.2
Add and .
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Multiply through by the least common denominator , then simplify.
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Simplify.
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Cancel the common factor of .
Step 3.2.2.2.1
Cancel the common factor.
Step 3.2.2.2.2
Rewrite the expression.
Step 3.2.2.3
Multiply by .
Step 3.2.3
Reorder and .
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Subtract from .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.5
Rewrite as .
Step 3.5.1.6
Rewrite as .
Step 3.5.1.7
Rewrite as .
Step 3.5.1.7.1
Factor out of .
Step 3.5.1.7.2
Rewrite as .
Step 3.5.1.8
Pull terms out from under the radical.
Step 3.5.1.9
Move to the left of .
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Subtract from .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.5
Rewrite as .
Step 3.6.1.6
Rewrite as .
Step 3.6.1.7
Rewrite as .
Step 3.6.1.7.1
Factor out of .
Step 3.6.1.7.2
Rewrite as .
Step 3.6.1.8
Pull terms out from under the radical.
Step 3.6.1.9
Move to the left of .
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Change the to .
Step 3.6.5
Rewrite as .
Step 3.6.6
Factor out of .
Step 3.6.7
Factor out of .
Step 3.6.8
Move the negative in front of the fraction.
Step 3.7
Simplify the expression to solve for the portion of the .
Step 3.7.1
Simplify the numerator.
Step 3.7.1.1
Raise to the power of .
Step 3.7.1.2
Multiply .
Step 3.7.1.2.1
Multiply by .
Step 3.7.1.2.2
Multiply by .
Step 3.7.1.3
Subtract from .
Step 3.7.1.4
Rewrite as .
Step 3.7.1.5
Rewrite as .
Step 3.7.1.6
Rewrite as .
Step 3.7.1.7
Rewrite as .
Step 3.7.1.7.1
Factor out of .
Step 3.7.1.7.2
Rewrite as .
Step 3.7.1.8
Pull terms out from under the radical.
Step 3.7.1.9
Move to the left of .
Step 3.7.2
Multiply by .
Step 3.7.3
Simplify .
Step 3.7.4
Change the to .
Step 3.7.5
Rewrite as .
Step 3.7.6
Factor out of .
Step 3.7.7
Factor out of .
Step 3.7.8
Move the negative in front of the fraction.
Step 3.8
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Multiply by .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.3
Cancel the common factor of and .
Step 4.2.1.1.3.1
Factor out of .
Step 4.2.1.1.3.2
Factor out of .
Step 4.2.1.1.3.3
Factor out of .
Step 4.2.1.1.3.4
Cancel the common factors.
Step 4.2.1.1.3.4.1
Factor out of .
Step 4.2.1.1.3.4.2
Cancel the common factor.
Step 4.2.1.1.3.4.3
Rewrite the expression.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.1.2
Multiply .
Step 5.2.1.1.2.1
Multiply by .
Step 5.2.1.1.2.2
Multiply by .
Step 5.2.1.1.3
Cancel the common factor of and .
Step 5.2.1.1.3.1
Factor out of .
Step 5.2.1.1.3.2
Factor out of .
Step 5.2.1.1.3.3
Factor out of .
Step 5.2.1.1.3.4
Cancel the common factors.
Step 5.2.1.1.3.4.1
Factor out of .
Step 5.2.1.1.3.4.2
Cancel the common factor.
Step 5.2.1.1.3.4.3
Rewrite the expression.
Step 5.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.1.3
Combine and .
Step 5.2.1.4
Combine the numerators over the common denominator.
Step 6
List all of the solutions.
Step 7