Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify by multiplying through.
Step 1.1.1
Apply the distributive property.
Step 1.1.2
Reorder.
Step 1.1.2.1
Rewrite using the commutative property of multiplication.
Step 1.1.2.2
Rewrite using the commutative property of multiplication.
Step 1.2
Simplify each term.
Step 1.2.1
Multiply by by adding the exponents.
Step 1.2.1.1
Move .
Step 1.2.1.2
Multiply by .
Step 1.2.2
Multiply by by adding the exponents.
Step 1.2.2.1
Move .
Step 1.2.2.2
Multiply by .
Step 2
Subtract from both sides of the equation.
Step 3
Use the quadratic formula to find the solutions.
Step 4
Substitute the values , , and into the quadratic formula and solve for .
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Add parentheses.
Step 5.1.2
Let . Substitute for all occurrences of .
Step 5.1.2.1
Apply the product rule to .
Step 5.1.2.2
Raise to the power of .
Step 5.1.2.3
Multiply the exponents in .
Step 5.1.2.3.1
Apply the power rule and multiply exponents, .
Step 5.1.2.3.2
Multiply by .
Step 5.1.3
Factor out of .
Step 5.1.3.1
Factor out of .
Step 5.1.3.2
Factor out of .
Step 5.1.3.3
Factor out of .
Step 5.1.4
Replace all occurrences of with .
Step 5.1.5
Simplify each term.
Step 5.1.5.1
Move to the left of .
Step 5.1.5.2
Multiply by .
Step 5.1.5.3
Multiply by .
Step 5.1.6
Factor out of .
Step 5.1.6.1
Factor out of .
Step 5.1.6.2
Factor out of .
Step 5.1.6.3
Factor out of .
Step 5.1.7
Rewrite as .
Step 5.1.7.1
Rewrite as .
Step 5.1.7.2
Add parentheses.
Step 5.1.8
Pull terms out from under the radical.
Step 5.2
Multiply by .
Step 5.3
Simplify .
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Add parentheses.
Step 6.1.2
Let . Substitute for all occurrences of .
Step 6.1.2.1
Apply the product rule to .
Step 6.1.2.2
Raise to the power of .
Step 6.1.2.3
Multiply the exponents in .
Step 6.1.2.3.1
Apply the power rule and multiply exponents, .
Step 6.1.2.3.2
Multiply by .
Step 6.1.3
Factor out of .
Step 6.1.3.1
Factor out of .
Step 6.1.3.2
Factor out of .
Step 6.1.3.3
Factor out of .
Step 6.1.4
Replace all occurrences of with .
Step 6.1.5
Simplify each term.
Step 6.1.5.1
Move to the left of .
Step 6.1.5.2
Multiply by .
Step 6.1.5.3
Multiply by .
Step 6.1.6
Factor out of .
Step 6.1.6.1
Factor out of .
Step 6.1.6.2
Factor out of .
Step 6.1.6.3
Factor out of .
Step 6.1.7
Rewrite as .
Step 6.1.7.1
Rewrite as .
Step 6.1.7.2
Add parentheses.
Step 6.1.8
Pull terms out from under the radical.
Step 6.2
Multiply by .
Step 6.3
Simplify .
Step 6.4
Change the to .
Step 6.5
Factor out of .
Step 6.6
Factor out of .
Step 6.7
Factor out of .
Step 6.8
Rewrite as .
Step 6.9
Move the negative in front of the fraction.
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Add parentheses.
Step 7.1.2
Let . Substitute for all occurrences of .
Step 7.1.2.1
Apply the product rule to .
Step 7.1.2.2
Raise to the power of .
Step 7.1.2.3
Multiply the exponents in .
Step 7.1.2.3.1
Apply the power rule and multiply exponents, .
Step 7.1.2.3.2
Multiply by .
Step 7.1.3
Factor out of .
Step 7.1.3.1
Factor out of .
Step 7.1.3.2
Factor out of .
Step 7.1.3.3
Factor out of .
Step 7.1.4
Replace all occurrences of with .
Step 7.1.5
Simplify each term.
Step 7.1.5.1
Move to the left of .
Step 7.1.5.2
Multiply by .
Step 7.1.5.3
Multiply by .
Step 7.1.6
Factor out of .
Step 7.1.6.1
Factor out of .
Step 7.1.6.2
Factor out of .
Step 7.1.6.3
Factor out of .
Step 7.1.7
Rewrite as .
Step 7.1.7.1
Rewrite as .
Step 7.1.7.2
Add parentheses.
Step 7.1.8
Pull terms out from under the radical.
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 7.4
Change the to .
Step 7.5
Factor out of .
Step 7.6
Factor out of .
Step 7.7
Factor out of .
Step 7.8
Rewrite as .
Step 7.9
Move the negative in front of the fraction.
Step 8
The final answer is the combination of both solutions.