Enter a problem...
Algebra Examples
cot(-x)cos(-x)+sin(-x)cot(−x)cos(−x)+sin(−x)
Step 1
Step 1.1
Since cot(-x)cot(−x) is an odd function, rewrite cot(-x)cot(−x) as -cot(x)−cot(x).
-cot(x)cos(-x)+sin(-x)−cot(x)cos(−x)+sin(−x)
Step 1.2
Rewrite cot(x)cot(x) in terms of sines and cosines.
-cos(x)sin(x)cos(-x)+sin(-x)−cos(x)sin(x)cos(−x)+sin(−x)
Step 1.3
Since cos(-x)cos(−x) is an even function, rewrite cos(-x)cos(−x) as cos(x)cos(x).
-cos(x)sin(x)cos(x)+sin(-x)−cos(x)sin(x)cos(x)+sin(−x)
Step 1.4
Multiply -cos(x)sin(x)cos(x)−cos(x)sin(x)cos(x).
Step 1.4.1
Combine cos(x)cos(x) and cos(x)sin(x)cos(x)sin(x).
-cos(x)cos(x)sin(x)+sin(-x)−cos(x)cos(x)sin(x)+sin(−x)
Step 1.4.2
Raise cos(x)cos(x) to the power of 11.
-cos1(x)cos(x)sin(x)+sin(-x)−cos1(x)cos(x)sin(x)+sin(−x)
Step 1.4.3
Raise cos(x)cos(x) to the power of 11.
-cos1(x)cos1(x)sin(x)+sin(-x)−cos1(x)cos1(x)sin(x)+sin(−x)
Step 1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
-cos(x)1+1sin(x)+sin(-x)−cos(x)1+1sin(x)+sin(−x)
Step 1.4.5
Add 11 and 11.
-cos2(x)sin(x)+sin(-x)−cos2(x)sin(x)+sin(−x)
-cos2(x)sin(x)+sin(-x)−cos2(x)sin(x)+sin(−x)
Step 1.5
Since sin(-x)sin(−x) is an odd function, rewrite sin(-x)sin(−x) as -sin(x)−sin(x).
-cos2(x)sin(x)-sin(x)−cos2(x)sin(x)−sin(x)
-cos2(x)sin(x)-sin(x)−cos2(x)sin(x)−sin(x)
Step 2
Step 2.1
Factor cos(x)cos(x) out of cos2(x)cos2(x).
-cos(x)cos(x)sin(x)-sin(x)−cos(x)cos(x)sin(x)−sin(x)
Step 2.2
Separate fractions.
-(cos(x)1⋅cos(x)sin(x))-sin(x)−(cos(x)1⋅cos(x)sin(x))−sin(x)
Step 2.3
Convert from cos(x)sin(x)cos(x)sin(x) to cot(x)cot(x).
-(cos(x)1cot(x))-sin(x)−(cos(x)1cot(x))−sin(x)
Step 2.4
Divide cos(x)cos(x) by 11.
-cos(x)cot(x)-sin(x)−cos(x)cot(x)−sin(x)
-cos(x)cot(x)-sin(x)−cos(x)cot(x)−sin(x)