Enter a problem...
Algebra Examples
Step 1
Rewrite the equation as .
Step 2
Subtract from both sides of the equation.
Step 3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4
Step 4.1
Use to rewrite as .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Apply the product rule to .
Step 4.2.1.2
Raise to the power of .
Step 4.2.1.3
Multiply the exponents in .
Step 4.2.1.3.1
Apply the power rule and multiply exponents, .
Step 4.2.1.3.2
Cancel the common factor of .
Step 4.2.1.3.2.1
Cancel the common factor.
Step 4.2.1.3.2.2
Rewrite the expression.
Step 4.2.1.4
Simplify.
Step 4.2.1.5
Apply the distributive property.
Step 4.2.1.6
Multiply by .
Step 4.3
Simplify the right side.
Step 4.3.1
Simplify .
Step 4.3.1.1
Rewrite as .
Step 4.3.1.2
Expand using the FOIL Method.
Step 4.3.1.2.1
Apply the distributive property.
Step 4.3.1.2.2
Apply the distributive property.
Step 4.3.1.2.3
Apply the distributive property.
Step 4.3.1.3
Simplify and combine like terms.
Step 4.3.1.3.1
Simplify each term.
Step 4.3.1.3.1.1
Multiply by .
Step 4.3.1.3.1.2
Rewrite using the commutative property of multiplication.
Step 4.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 4.3.1.3.1.4
Multiply by by adding the exponents.
Step 4.3.1.3.1.4.1
Move .
Step 4.3.1.3.1.4.2
Multiply by .
Step 4.3.1.3.1.5
Multiply by .
Step 4.3.1.3.1.6
Multiply by .
Step 4.3.1.3.2
Subtract from .
Step 4.3.1.3.2.1
Move .
Step 4.3.1.3.2.2
Subtract from .
Step 5
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Add to both sides of the equation.
Step 5.4
Use the quadratic formula to find the solutions.
Step 5.5
Substitute the values , , and into the quadratic formula and solve for .
Step 5.6
Simplify.
Step 5.6.1
Simplify the numerator.
Step 5.6.1.1
Apply the distributive property.
Step 5.6.1.2
Multiply by .
Step 5.6.1.3
Multiply by .
Step 5.6.1.4
Add parentheses.
Step 5.6.1.5
Let . Substitute for all occurrences of .
Step 5.6.1.5.1
Rewrite as .
Step 5.6.1.5.2
Expand using the FOIL Method.
Step 5.6.1.5.2.1
Apply the distributive property.
Step 5.6.1.5.2.2
Apply the distributive property.
Step 5.6.1.5.2.3
Apply the distributive property.
Step 5.6.1.5.3
Simplify and combine like terms.
Step 5.6.1.5.3.1
Simplify each term.
Step 5.6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 5.6.1.5.3.1.2
Multiply by by adding the exponents.
Step 5.6.1.5.3.1.2.1
Move .
Step 5.6.1.5.3.1.2.2
Multiply by .
Step 5.6.1.5.3.1.3
Multiply by .
Step 5.6.1.5.3.1.4
Multiply by .
Step 5.6.1.5.3.1.5
Multiply by .
Step 5.6.1.5.3.1.6
Multiply by .
Step 5.6.1.5.3.2
Add and .
Step 5.6.1.6
Factor out of .
Step 5.6.1.6.1
Factor out of .
Step 5.6.1.6.2
Factor out of .
Step 5.6.1.6.3
Factor out of .
Step 5.6.1.6.4
Factor out of .
Step 5.6.1.6.5
Factor out of .
Step 5.6.1.6.6
Factor out of .
Step 5.6.1.6.7
Factor out of .
Step 5.6.1.7
Replace all occurrences of with .
Step 5.6.1.8
Simplify.
Step 5.6.1.8.1
Simplify each term.
Step 5.6.1.8.1.1
Multiply by .
Step 5.6.1.8.1.2
Apply the distributive property.
Step 5.6.1.8.1.3
Multiply by .
Step 5.6.1.8.2
Combine the opposite terms in .
Step 5.6.1.8.2.1
Subtract from .
Step 5.6.1.8.2.2
Add and .
Step 5.6.1.8.2.3
Subtract from .
Step 5.6.1.8.2.4
Add and .
Step 5.6.1.9
Multiply by .
Step 5.6.1.10
Rewrite as .
Step 5.6.1.10.1
Rewrite as .
Step 5.6.1.10.2
Rewrite as .
Step 5.6.1.11
Pull terms out from under the radical.
Step 5.6.1.12
Raise to the power of .
Step 5.6.2
Multiply by .
Step 5.7
The final answer is the combination of both solutions.