Enter a problem...
Algebra Examples
(6x3)2(2x2)3⋅(3x2)0
Step 1
Step 1.1
Apply the product rule to 6x3.
62(x3)2(2x2)3⋅(3x2)0
Step 1.2
Raise 6 to the power of 2.
36(x3)2(2x2)3⋅(3x2)0
Step 1.3
Multiply the exponents in (x3)2.
Step 1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
36x3⋅2(2x2)3⋅(3x2)0
Step 1.3.2
Multiply 3 by 2.
36x6(2x2)3⋅(3x2)0
36x6(2x2)3⋅(3x2)0
36x6(2x2)3⋅(3x2)0
Step 2
Step 2.1
Apply the product rule to 2x2.
36x623(x2)3⋅(3x2)0
Step 2.2
Raise 2 to the power of 3.
36x68(x2)3⋅(3x2)0
Step 2.3
Multiply the exponents in (x2)3.
Step 2.3.1
Apply the power rule and multiply exponents, (am)n=amn.
36x68x2⋅3⋅(3x2)0
Step 2.3.2
Multiply 2 by 3.
36x68x6⋅(3x2)0
36x68x6⋅(3x2)0
36x68x6⋅(3x2)0
Step 3
Step 3.1
Cancel the common factor of 36 and 8.
Step 3.1.1
Factor 4 out of 36x6.
4(9x6)8x6⋅(3x2)0
Step 3.1.2
Cancel the common factors.
Step 3.1.2.1
Factor 4 out of 8x6.
4(9x6)4(2x6)⋅(3x2)0
Step 3.1.2.2
Cancel the common factor.
4(9x6)4(2x6)⋅(3x2)0
Step 3.1.2.3
Rewrite the expression.
9x62x6⋅(3x2)0
9x62x6⋅(3x2)0
9x62x6⋅(3x2)0
Step 3.2
Cancel the common factor of x6.
Step 3.2.1
Cancel the common factor.
9x62x6⋅(3x2)0
Step 3.2.2
Rewrite the expression.
92⋅(3x2)0
92⋅(3x2)0
Step 3.3
Simplify the expression.
Step 3.3.1
Apply the product rule to 3x2.
92⋅(30(x2)0)
Step 3.3.2
Anything raised to 0 is 1.
92⋅(1(x2)0)
Step 3.3.3
Multiply (x2)0 by 1.
92⋅(x2)0
Step 3.3.4
Multiply the exponents in (x2)0.
Step 3.3.4.1
Apply the power rule and multiply exponents, (am)n=amn.
92⋅x2⋅0
Step 3.3.4.2
Multiply 2 by 0.
92⋅x0
92⋅x0
Step 3.3.5
Anything raised to 0 is 1.
92⋅1
Step 3.3.6
Multiply 92 by 1.
92
92
92
Step 4
The result can be shown in multiple forms.
Exact Form:
92
Decimal Form:
4.5
Mixed Number Form:
412