Algebra Examples

Solve for x (-2cos(x)-3sin(x))^2-5sin(x)^2=1
Step 1
Subtract from both sides of the equation.
Step 2
Simplify .
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite as .
Step 2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1
Apply the distributive property.
Step 2.1.2.2
Apply the distributive property.
Step 2.1.2.3
Apply the distributive property.
Step 2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.3.1.1
Multiply .
Tap for more steps...
Step 2.1.3.1.1.1
Multiply by .
Step 2.1.3.1.1.2
Raise to the power of .
Step 2.1.3.1.1.3
Raise to the power of .
Step 2.1.3.1.1.4
Use the power rule to combine exponents.
Step 2.1.3.1.1.5
Add and .
Step 2.1.3.1.2
Multiply by .
Step 2.1.3.1.3
Multiply by .
Step 2.1.3.1.4
Multiply .
Tap for more steps...
Step 2.1.3.1.4.1
Multiply by .
Step 2.1.3.1.4.2
Raise to the power of .
Step 2.1.3.1.4.3
Raise to the power of .
Step 2.1.3.1.4.4
Use the power rule to combine exponents.
Step 2.1.3.1.4.5
Add and .
Step 2.1.3.2
Reorder the factors of .
Step 2.1.3.3
Add and .
Step 2.2
Subtract from .
Step 2.3
Move .
Step 2.4
Factor out of .
Step 2.5
Factor out of .
Step 2.6
Factor out of .
Step 2.7
Rearrange terms.
Step 2.8
Apply pythagorean identity.
Step 2.9
Multiply by .
Step 2.10
Subtract from .
Step 3
Divide each term in the equation by .
Step 4
Cancel the common factor of .
Tap for more steps...
Step 4.1
Cancel the common factor.
Step 4.2
Divide by .
Step 5
Separate fractions.
Step 6
Convert from to .
Step 7
Divide by .
Step 8
Separate fractions.
Step 9
Convert from to .
Step 10
Divide by .
Step 11
Multiply by .
Step 12
Multiply both sides by .
Step 13
Simplify.
Tap for more steps...
Step 13.1
Simplify the left side.
Tap for more steps...
Step 13.1.1
Simplify .
Tap for more steps...
Step 13.1.1.1
Simplify each term.
Tap for more steps...
Step 13.1.1.1.1
Rewrite in terms of sines and cosines.
Step 13.1.1.1.2
Combine and .
Step 13.1.1.2
Simplify terms.
Tap for more steps...
Step 13.1.1.2.1
Apply the distributive property.
Step 13.1.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 13.1.1.2.2.1
Cancel the common factor.
Step 13.1.1.2.2.2
Rewrite the expression.
Step 13.2
Simplify the right side.
Tap for more steps...
Step 13.2.1
Cancel the common factor of .
Tap for more steps...
Step 13.2.1.1
Cancel the common factor.
Step 13.2.1.2
Rewrite the expression.
Step 14
Solve for .
Tap for more steps...
Step 14.1
Divide each term in the equation by .
Step 14.2
Cancel the common factor of .
Tap for more steps...
Step 14.2.1
Cancel the common factor.
Step 14.2.2
Divide by .
Step 14.3
Separate fractions.
Step 14.4
Convert from to .
Step 14.5
Divide by .
Step 14.6
Separate fractions.
Step 14.7
Convert from to .
Step 14.8
Divide by .
Step 14.9
Multiply by .
Step 14.10
Multiply both sides by .
Step 14.11
Simplify.
Tap for more steps...
Step 14.11.1
Simplify the left side.
Tap for more steps...
Step 14.11.1.1
Simplify .
Tap for more steps...
Step 14.11.1.1.1
Simplify each term.
Tap for more steps...
Step 14.11.1.1.1.1
Rewrite in terms of sines and cosines.
Step 14.11.1.1.1.2
Combine and .
Step 14.11.1.1.2
Simplify terms.
Tap for more steps...
Step 14.11.1.1.2.1
Apply the distributive property.
Step 14.11.1.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 14.11.1.1.2.2.1
Cancel the common factor.
Step 14.11.1.1.2.2.2
Rewrite the expression.
Step 14.11.2
Simplify the right side.
Tap for more steps...
Step 14.11.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.11.2.1.1
Cancel the common factor.
Step 14.11.2.1.2
Rewrite the expression.
Step 14.12
Solve for .
Tap for more steps...
Step 14.12.1
Divide each term in the equation by .
Step 14.12.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.2.1
Cancel the common factor.
Step 14.12.2.2
Divide by .
Step 14.12.3
Separate fractions.
Step 14.12.4
Convert from to .
Step 14.12.5
Divide by .
Step 14.12.6
Separate fractions.
Step 14.12.7
Convert from to .
Step 14.12.8
Divide by .
Step 14.12.9
Multiply by .
Step 14.12.10
Multiply both sides by .
Step 14.12.11
Simplify.
Tap for more steps...
Step 14.12.11.1
Simplify the left side.
Tap for more steps...
Step 14.12.11.1.1
Simplify .
Tap for more steps...
Step 14.12.11.1.1.1
Simplify each term.
Tap for more steps...
Step 14.12.11.1.1.1.1
Rewrite in terms of sines and cosines.
Step 14.12.11.1.1.1.2
Combine and .
Step 14.12.11.1.1.2
Simplify terms.
Tap for more steps...
Step 14.12.11.1.1.2.1
Apply the distributive property.
Step 14.12.11.1.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.11.1.1.2.2.1
Cancel the common factor.
Step 14.12.11.1.1.2.2.2
Rewrite the expression.
Step 14.12.11.2
Simplify the right side.
Tap for more steps...
Step 14.12.11.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.11.2.1.1
Cancel the common factor.
Step 14.12.11.2.1.2
Rewrite the expression.
Step 14.12.12
Solve for .
Tap for more steps...
Step 14.12.12.1
Divide each term in the equation by .
Step 14.12.12.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.2.1
Cancel the common factor.
Step 14.12.12.2.2
Divide by .
Step 14.12.12.3
Separate fractions.
Step 14.12.12.4
Convert from to .
Step 14.12.12.5
Divide by .
Step 14.12.12.6
Separate fractions.
Step 14.12.12.7
Convert from to .
Step 14.12.12.8
Divide by .
Step 14.12.12.9
Multiply by .
Step 14.12.12.10
Multiply both sides by .
Step 14.12.12.11
Simplify.
Tap for more steps...
Step 14.12.12.11.1
Simplify the left side.
Tap for more steps...
Step 14.12.12.11.1.1
Simplify .
Tap for more steps...
Step 14.12.12.11.1.1.1
Simplify each term.
Tap for more steps...
Step 14.12.12.11.1.1.1.1
Rewrite in terms of sines and cosines.
Step 14.12.12.11.1.1.1.2
Combine and .
Step 14.12.12.11.1.1.2
Simplify terms.
Tap for more steps...
Step 14.12.12.11.1.1.2.1
Apply the distributive property.
Step 14.12.12.11.1.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.11.1.1.2.2.1
Cancel the common factor.
Step 14.12.12.11.1.1.2.2.2
Rewrite the expression.
Step 14.12.12.11.2
Simplify the right side.
Tap for more steps...
Step 14.12.12.11.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.11.2.1.1
Cancel the common factor.
Step 14.12.12.11.2.1.2
Rewrite the expression.
Step 14.12.12.12
Solve for .
Tap for more steps...
Step 14.12.12.12.1
Divide each term in the equation by .
Step 14.12.12.12.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.2.1
Cancel the common factor.
Step 14.12.12.12.2.2
Divide by .
Step 14.12.12.12.3
Separate fractions.
Step 14.12.12.12.4
Convert from to .
Step 14.12.12.12.5
Divide by .
Step 14.12.12.12.6
Separate fractions.
Step 14.12.12.12.7
Convert from to .
Step 14.12.12.12.8
Divide by .
Step 14.12.12.12.9
Multiply by .
Step 14.12.12.12.10
Multiply both sides by .
Step 14.12.12.12.11
Simplify.
Tap for more steps...
Step 14.12.12.12.11.1
Simplify the left side.
Tap for more steps...
Step 14.12.12.12.11.1.1
Simplify .
Tap for more steps...
Step 14.12.12.12.11.1.1.1
Simplify each term.
Tap for more steps...
Step 14.12.12.12.11.1.1.1.1
Rewrite in terms of sines and cosines.
Step 14.12.12.12.11.1.1.1.2
Combine and .
Step 14.12.12.12.11.1.1.2
Simplify terms.
Tap for more steps...
Step 14.12.12.12.11.1.1.2.1
Apply the distributive property.
Step 14.12.12.12.11.1.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.11.1.1.2.2.1
Cancel the common factor.
Step 14.12.12.12.11.1.1.2.2.2
Rewrite the expression.
Step 14.12.12.12.11.2
Simplify the right side.
Tap for more steps...
Step 14.12.12.12.11.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.11.2.1.1
Cancel the common factor.
Step 14.12.12.12.11.2.1.2
Rewrite the expression.
Step 14.12.12.12.12
Solve for .
Tap for more steps...
Step 14.12.12.12.12.1
Subtract from both sides of the equation.
Step 14.12.12.12.12.2
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 14.12.12.12.12.2.1
Multiply each term in by .
Step 14.12.12.12.12.2.2
Simplify the left side.
Tap for more steps...
Step 14.12.12.12.12.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.12.2.2.1.1
Factor out of .
Step 14.12.12.12.12.2.2.1.2
Cancel the common factor.
Step 14.12.12.12.12.2.2.1.3
Rewrite the expression.
Step 14.12.12.12.12.2.2.2
Apply the sine double-angle identity.
Step 14.12.12.12.12.2.3
Simplify the right side.
Tap for more steps...
Step 14.12.12.12.12.2.3.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.12.2.3.1.1
Factor out of .
Step 14.12.12.12.12.2.3.1.2
Factor out of .
Step 14.12.12.12.12.2.3.1.3
Cancel the common factor.
Step 14.12.12.12.12.2.3.1.4
Rewrite the expression.
Step 14.12.12.12.12.3
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 14.12.12.12.12.4
Simplify the right side.
Tap for more steps...
Step 14.12.12.12.12.4.1
The exact value of is .
Step 14.12.12.12.12.5
Divide each term in by and simplify.
Tap for more steps...
Step 14.12.12.12.12.5.1
Divide each term in by .
Step 14.12.12.12.12.5.2
Simplify the left side.
Tap for more steps...
Step 14.12.12.12.12.5.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.12.5.2.1.1
Cancel the common factor.
Step 14.12.12.12.12.5.2.1.2
Divide by .
Step 14.12.12.12.12.5.3
Simplify the right side.
Tap for more steps...
Step 14.12.12.12.12.5.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 14.12.12.12.12.5.3.2
Multiply .
Tap for more steps...
Step 14.12.12.12.12.5.3.2.1
Multiply by .
Step 14.12.12.12.12.5.3.2.2
Multiply by .
Step 14.12.12.12.12.6
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 14.12.12.12.12.7
Simplify the expression to find the second solution.
Tap for more steps...
Step 14.12.12.12.12.7.1
Subtract from .
Step 14.12.12.12.12.7.2
The resulting angle of is positive, less than , and coterminal with .
Step 14.12.12.12.12.7.3
Divide each term in by and simplify.
Tap for more steps...
Step 14.12.12.12.12.7.3.1
Divide each term in by .
Step 14.12.12.12.12.7.3.2
Simplify the left side.
Tap for more steps...
Step 14.12.12.12.12.7.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.12.7.3.2.1.1
Cancel the common factor.
Step 14.12.12.12.12.7.3.2.1.2
Divide by .
Step 14.12.12.12.12.7.3.3
Simplify the right side.
Tap for more steps...
Step 14.12.12.12.12.7.3.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 14.12.12.12.12.7.3.3.2
Multiply .
Tap for more steps...
Step 14.12.12.12.12.7.3.3.2.1
Multiply by .
Step 14.12.12.12.12.7.3.3.2.2
Multiply by .
Step 14.12.12.12.12.8
Find the period of .
Tap for more steps...
Step 14.12.12.12.12.8.1
The period of the function can be calculated using .
Step 14.12.12.12.12.8.2
Replace with in the formula for period.
Step 14.12.12.12.12.8.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 14.12.12.12.12.8.4
Cancel the common factor of .
Tap for more steps...
Step 14.12.12.12.12.8.4.1
Cancel the common factor.
Step 14.12.12.12.12.8.4.2
Divide by .
Step 14.12.12.12.12.9
Add to every negative angle to get positive angles.
Tap for more steps...
Step 14.12.12.12.12.9.1
Add to to find the positive angle.
Step 14.12.12.12.12.9.2
To write as a fraction with a common denominator, multiply by .
Step 14.12.12.12.12.9.3
Combine fractions.
Tap for more steps...
Step 14.12.12.12.12.9.3.1
Combine and .
Step 14.12.12.12.12.9.3.2
Combine the numerators over the common denominator.
Step 14.12.12.12.12.9.4
Simplify the numerator.
Tap for more steps...
Step 14.12.12.12.12.9.4.1
Move to the left of .
Step 14.12.12.12.12.9.4.2
Subtract from .
Step 14.12.12.12.12.9.5
List the new angles.
Step 14.12.12.12.12.10
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer