Enter a problem...
Algebra Examples
Step 1
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 2
Step 2.1
Subtract from both sides of the inequality.
Step 2.2
Subtract from .
Step 3
Step 3.1
Subtract from both sides of the inequality.
Step 3.2
Subtract from .
Step 4
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
Solve for .
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Divide each term in by and simplify.
Step 4.2.2.1
Divide each term in by .
Step 4.2.2.2
Simplify the left side.
Step 4.2.2.2.1
Cancel the common factor of .
Step 4.2.2.2.1.1
Cancel the common factor.
Step 4.2.2.2.1.2
Divide by .
Step 4.2.2.3
Simplify the right side.
Step 4.2.2.3.1
Move the negative in front of the fraction.
Step 4.3
The domain is all values of that make the expression defined.
Step 5
Use each root to create test intervals.
Step 6
Step 6.1
Test a value on the interval to see if it makes the inequality true.
Step 6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.1.2
Replace with in the original inequality.
Step 6.1.3
The left side is greater than the right side , which means that the given statement is false.
False
False
Step 6.2
Test a value on the interval to see if it makes the inequality true.
Step 6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.2.2
Replace with in the original inequality.
Step 6.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 6.3
Test a value on the interval to see if it makes the inequality true.
Step 6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.3.2
Replace with in the original inequality.
Step 6.3.3
The left side is greater than the right side , which means that the given statement is false.
False
False
Step 6.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 7
The solution consists of all of the true intervals.
Step 8
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 9