Enter a problem...
Algebra Examples
Step 1
Rewrite as .
Step 2
Let . Substitute for all occurrences of .
Step 3
Step 3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.2
Write the factored form using these integers.
Step 4
Replace all occurrences of with .
Step 5
Rewrite as .
Step 6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 7
Step 7.1
Factor by grouping.
Step 7.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 7.1.1.1
Factor out of .
Step 7.1.1.2
Rewrite as plus
Step 7.1.1.3
Apply the distributive property.
Step 7.1.2
Factor out the greatest common factor from each group.
Step 7.1.2.1
Group the first two terms and the last two terms.
Step 7.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 7.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 7.2
Remove unnecessary parentheses.
Step 8
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 9
Step 9.1
Set equal to .
Step 9.2
Subtract from both sides of the equation.
Step 10
Step 10.1
Set equal to .
Step 10.2
Add to both sides of the equation.
Step 11
Step 11.1
Set equal to .
Step 11.2
Solve for .
Step 11.2.1
Subtract from both sides of the equation.
Step 11.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 11.2.3
Simplify .
Step 11.2.3.1
Rewrite as .
Step 11.2.3.2
Rewrite as .
Step 11.2.3.3
Rewrite as .
Step 11.2.3.4
Rewrite as .
Step 11.2.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 11.2.3.6
Move to the left of .
Step 11.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 11.2.4.1
First, use the positive value of the to find the first solution.
Step 11.2.4.2
Next, use the negative value of the to find the second solution.
Step 11.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 12
Step 12.1
Set equal to .
Step 12.2
Solve for .
Step 12.2.1
Add to both sides of the equation.
Step 12.2.2
Divide each term in by and simplify.
Step 12.2.2.1
Divide each term in by .
Step 12.2.2.2
Simplify the left side.
Step 12.2.2.2.1
Cancel the common factor of .
Step 12.2.2.2.1.1
Cancel the common factor.
Step 12.2.2.2.1.2
Divide by .
Step 13
Step 13.1
Set equal to .
Step 13.2
Subtract from both sides of the equation.
Step 14
The final solution is all the values that make true.