Enter a problem...
Algebra Examples
y=34x+12y=34x+12 y=43x
Step 1
Eliminate the equal sides of each equation and combine.
34x+12=43x
Step 2
Step 2.1
Combine 34 and x.
3x4+12=43x
Step 2.2
Combine 43 and x.
3x4+12=4x3
Step 2.3
Move all terms containing x to the left side of the equation.
Step 2.3.1
Subtract 4x3 from both sides of the equation.
3x4+12-4x3=0
Step 2.3.2
To write 3x4 as a fraction with a common denominator, multiply by 33.
3x4⋅33-4x3+12=0
Step 2.3.3
To write -4x3 as a fraction with a common denominator, multiply by 44.
3x4⋅33-4x3⋅44+12=0
Step 2.3.4
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.3.4.1
Multiply 3x4 by 33.
3x⋅34⋅3-4x3⋅44+12=0
Step 2.3.4.2
Multiply 4 by 3.
3x⋅312-4x3⋅44+12=0
Step 2.3.4.3
Multiply 4x3 by 44.
3x⋅312-4x⋅43⋅4+12=0
Step 2.3.4.4
Multiply 3 by 4.
3x⋅312-4x⋅412+12=0
3x⋅312-4x⋅412+12=0
Step 2.3.5
Combine the numerators over the common denominator.
3x⋅3-4x⋅412+12=0
Step 2.3.6
Simplify each term.
Step 2.3.6.1
Simplify the numerator.
Step 2.3.6.1.1
Factor x out of 3x⋅3-4x⋅4.
Step 2.3.6.1.1.1
Factor x out of 3x⋅3.
x(3⋅3)-4x⋅412+12=0
Step 2.3.6.1.1.2
Factor x out of -4x⋅4.
x(3⋅3)+x(-4⋅4)12+12=0
Step 2.3.6.1.1.3
Factor x out of x(3⋅3)+x(-4⋅4).
x(3⋅3-4⋅4)12+12=0
x(3⋅3-4⋅4)12+12=0
Step 2.3.6.1.2
Multiply 3 by 3.
x(9-4⋅4)12+12=0
Step 2.3.6.1.3
Multiply -4 by 4.
x(9-16)12+12=0
Step 2.3.6.1.4
Subtract 16 from 9.
x⋅-712+12=0
x⋅-712+12=0
Step 2.3.6.2
Move -7 to the left of x.
-7⋅x12+12=0
Step 2.3.6.3
Move the negative in front of the fraction.
-7x12+12=0
-7x12+12=0
-7x12+12=0
Step 2.4
Subtract 12 from both sides of the equation.
-7x12=-12
Step 2.5
Multiply both sides of the equation by -127.
-127(-7x12)=-127⋅-12
Step 2.6
Simplify both sides of the equation.
Step 2.6.1
Simplify the left side.
Step 2.6.1.1
Simplify -127(-7x12).
Step 2.6.1.1.1
Cancel the common factor of 12.
Step 2.6.1.1.1.1
Move the leading negative in -127 into the numerator.
-127(-7x12)=-127⋅-12
Step 2.6.1.1.1.2
Move the leading negative in -7x12 into the numerator.
-127⋅-7x12=-127⋅-12
Step 2.6.1.1.1.3
Factor 12 out of -12.
12(-1)7⋅-7x12=-127⋅-12
Step 2.6.1.1.1.4
Cancel the common factor.
12⋅-17⋅-7x12=-127⋅-12
Step 2.6.1.1.1.5
Rewrite the expression.
-17(-7x)=-127⋅-12
-17(-7x)=-127⋅-12
Step 2.6.1.1.2
Cancel the common factor of 7.
Step 2.6.1.1.2.1
Factor 7 out of -7x.
-17(7(-x))=-127⋅-12
Step 2.6.1.1.2.2
Cancel the common factor.
-17(7(-x))=-127⋅-12
Step 2.6.1.1.2.3
Rewrite the expression.
--x=-127⋅-12
--x=-127⋅-12
Step 2.6.1.1.3
Multiply.
Step 2.6.1.1.3.1
Multiply -1 by -1.
1x=-127⋅-12
Step 2.6.1.1.3.2
Multiply x by 1.
x=-127⋅-12
x=-127⋅-12
x=-127⋅-12
x=-127⋅-12
Step 2.6.2
Simplify the right side.
Step 2.6.2.1
Multiply -127⋅-12.
Step 2.6.2.1.1
Multiply -12 by -1.
x=12(127)
Step 2.6.2.1.2
Combine 12 and 127.
x=12⋅127
Step 2.6.2.1.3
Multiply 12 by 12.
x=1447
x=1447
x=1447
x=1447
x=1447
Step 3
Step 3.1
Substitute 1447 for x.
y=43⋅(1447)
Step 3.2
Substitute 1447 for x in y=43⋅(1447) and solve for y.
Step 3.2.1
Multiply 43 by 1447.
y=43⋅1447
Step 3.2.2
Simplify 43⋅1447.
Step 3.2.2.1
Cancel the common factor of 3.
Step 3.2.2.1.1
Factor 3 out of 144.
y=43⋅3(48)7
Step 3.2.2.1.2
Cancel the common factor.
y=43⋅3⋅487
Step 3.2.2.1.3
Rewrite the expression.
y=4⋅487
y=4⋅487
Step 3.2.2.2
Combine 4 and 487.
y=4⋅487
Step 3.2.2.3
Multiply 4 by 48.
y=1927
y=1927
y=1927
y=1927
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(1447,1927)
Step 5
The result can be shown in multiple forms.
Point Form:
(1447,1927)
Equation Form:
x=1447,y=1927
Step 6