Algebra Examples

Graph (x^2+y^2-1)^3=x^2 y^3
(x2+y2-1)3=x2(x2+y21)3=x2 y3y3
Step 1
Graph y3y3.
Tap for more steps...
Step 1.1
Find the point at x=-1x=1.
Tap for more steps...
Step 1.1.1
Replace the variable xx with -11 in the expression.
f(-1)=3-1f(1)=31
Step 1.1.2
Simplify the result.
Tap for more steps...
Step 1.1.2.1
Remove parentheses.
f(-1)=3-1f(1)=31
Step 1.1.2.2
Rewrite -11 as (-1)3(1)3.
f(-1)=3(-1)3f(1)=3(1)3
Step 1.1.2.3
Pull terms out from under the radical, assuming real numbers.
f(-1)=-1f(1)=1
Step 1.1.2.4
The final answer is -11.
-11
-11
Step 1.1.3
Convert -11 to decimal.
y=-1y=1
y=-1y=1
Step 1.2
Find the point at x=0x=0.
Tap for more steps...
Step 1.2.1
Replace the variable xx with 00 in the expression.
f(0)=30f(0)=30
Step 1.2.2
Simplify the result.
Tap for more steps...
Step 1.2.2.1
Remove parentheses.
f(0)=30f(0)=30
Step 1.2.2.2
Rewrite 00 as 0303.
f(0)=303f(0)=303
Step 1.2.2.3
Pull terms out from under the radical, assuming real numbers.
f(0)=0f(0)=0
Step 1.2.2.4
The final answer is 00.
00
00
Step 1.2.3
Convert 00 to decimal.
y=0y=0
y=0y=0
Step 1.3
Find the point at x=1x=1.
Tap for more steps...
Step 1.3.1
Replace the variable xx with 11 in the expression.
f(1)=31f(1)=31
Step 1.3.2
Simplify the result.
Tap for more steps...
Step 1.3.2.1
Remove parentheses.
f(1)=31f(1)=31
Step 1.3.2.2
Any root of 11 is 11.
f(1)=1f(1)=1
Step 1.3.2.3
The final answer is 11.
11
11
Step 1.3.3
Convert 11 to decimal.
y=1y=1
y=1y=1
Step 1.4
Find the point at x=-2x=2.
Tap for more steps...
Step 1.4.1
Replace the variable xx with -22 in the expression.
f(-2)=3-2f(2)=32
Step 1.4.2
Simplify the result.
Tap for more steps...
Step 1.4.2.1
Remove parentheses.
f(-2)=3-2f(2)=32
Step 1.4.2.2
Rewrite -22 as (-1)32(1)32.
Tap for more steps...
Step 1.4.2.2.1
Rewrite -22 as -1(2)1(2).
f(-2)=3-12f(2)=312
Step 1.4.2.2.2
Rewrite -11 as (-1)3(1)3.
f(-2)=3(-1)32f(2)=3(1)32
f(-2)=3(-1)32f(2)=3(1)32
Step 1.4.2.3
Pull terms out from under the radical.
f(-2)=-132f(2)=132
Step 1.4.2.4
Rewrite -132132 as -3232.
f(-2)=-32f(2)=32
Step 1.4.2.5
The final answer is -3232.
-3232
-3232
Step 1.4.3
Convert -3232 to decimal.
y=-1.25992104y=1.25992104
y=-1.25992104y=1.25992104
Step 1.5
Find the point at x=2x=2.
Tap for more steps...
Step 1.5.1
Replace the variable xx with 22 in the expression.
f(2)=32f(2)=32
Step 1.5.2
Simplify the result.
Tap for more steps...
Step 1.5.2.1
Remove parentheses.
f(2)=32f(2)=32
Step 1.5.2.2
The final answer is 3232.
3232
3232
Step 1.5.3
Convert 3232 to decimal.
y=1.25992104y=1.25992104
y=1.25992104y=1.25992104
Step 1.6
The cubic function can be graphed using the function behavior and the points.
xy-2-1.26-1-1001121.26xy21.2611001121.26
Step 1.7
The cubic function can be graphed using the function behavior and the selected points.
Not a polynomial
xy-2-1.26-1-1001121.26xy21.2611001121.26
Not a polynomial
xy-2-1.26-1-1001121.26xy21.2611001121.26
Step 2
Plot each graph on the same coordinate system.
(x2+y2-1)3=x2(x2+y21)3=x2
y3y3
Step 3
 [x2  12  π  xdx ]  x2  12  π  xdx