Enter a problem...
Algebra Examples
(x2+y2-1)3=x2(x2+y2−1)3=x2 y3y3
Step 1
Step 1.1
Find the point at x=-1x=−1.
Step 1.1.1
Replace the variable xx with -1−1 in the expression.
f(-1)=3√-1f(−1)=3√−1
Step 1.1.2
Simplify the result.
Step 1.1.2.1
Remove parentheses.
f(-1)=3√-1f(−1)=3√−1
Step 1.1.2.2
Rewrite -1−1 as (-1)3(−1)3.
f(-1)=3√(-1)3f(−1)=3√(−1)3
Step 1.1.2.3
Pull terms out from under the radical, assuming real numbers.
f(-1)=-1f(−1)=−1
Step 1.1.2.4
The final answer is -1−1.
-1−1
-1−1
Step 1.1.3
Convert -1−1 to decimal.
y=-1y=−1
y=-1y=−1
Step 1.2
Find the point at x=0x=0.
Step 1.2.1
Replace the variable xx with 00 in the expression.
f(0)=3√0f(0)=3√0
Step 1.2.2
Simplify the result.
Step 1.2.2.1
Remove parentheses.
f(0)=3√0f(0)=3√0
Step 1.2.2.2
Rewrite 00 as 0303.
f(0)=3√03f(0)=3√03
Step 1.2.2.3
Pull terms out from under the radical, assuming real numbers.
f(0)=0f(0)=0
Step 1.2.2.4
The final answer is 00.
00
00
Step 1.2.3
Convert 00 to decimal.
y=0y=0
y=0y=0
Step 1.3
Find the point at x=1x=1.
Step 1.3.1
Replace the variable xx with 11 in the expression.
f(1)=3√1f(1)=3√1
Step 1.3.2
Simplify the result.
Step 1.3.2.1
Remove parentheses.
f(1)=3√1f(1)=3√1
Step 1.3.2.2
Any root of 11 is 11.
f(1)=1f(1)=1
Step 1.3.2.3
The final answer is 11.
11
11
Step 1.3.3
Convert 11 to decimal.
y=1y=1
y=1y=1
Step 1.4
Find the point at x=-2x=−2.
Step 1.4.1
Replace the variable xx with -2−2 in the expression.
f(-2)=3√-2f(−2)=3√−2
Step 1.4.2
Simplify the result.
Step 1.4.2.1
Remove parentheses.
f(-2)=3√-2f(−2)=3√−2
Step 1.4.2.2
Rewrite -2−2 as (-1)3⋅2(−1)3⋅2.
Step 1.4.2.2.1
Rewrite -2−2 as -1(2)−1(2).
f(-2)=3√-1⋅2f(−2)=3√−1⋅2
Step 1.4.2.2.2
Rewrite -1−1 as (-1)3(−1)3.
f(-2)=3√(-1)3⋅2f(−2)=3√(−1)3⋅2
f(-2)=3√(-1)3⋅2f(−2)=3√(−1)3⋅2
Step 1.4.2.3
Pull terms out from under the radical.
f(-2)=-13√2f(−2)=−13√2
Step 1.4.2.4
Rewrite -13√2−13√2 as -3√2−3√2.
f(-2)=-3√2f(−2)=−3√2
Step 1.4.2.5
The final answer is -3√2−3√2.
-3√2−3√2
-3√2−3√2
Step 1.4.3
Convert -3√2−3√2 to decimal.
y=-1.25992104y=−1.25992104
y=-1.25992104y=−1.25992104
Step 1.5
Find the point at x=2x=2.
Step 1.5.1
Replace the variable xx with 22 in the expression.
f(2)=3√2f(2)=3√2
Step 1.5.2
Simplify the result.
Step 1.5.2.1
Remove parentheses.
f(2)=3√2f(2)=3√2
Step 1.5.2.2
The final answer is 3√23√2.
3√23√2
3√23√2
Step 1.5.3
Convert 3√23√2 to decimal.
y=1.25992104y=1.25992104
y=1.25992104y=1.25992104
Step 1.6
The cubic function can be graphed using the function behavior and the points.
xy-2-1.26-1-1001121.26xy−2−1.26−1−1001121.26
Step 1.7
The cubic function can be graphed using the function behavior and the selected points.
Not a polynomial
xy-2-1.26-1-1001121.26xy−2−1.26−1−1001121.26
Not a polynomial
xy-2-1.26-1-1001121.26xy−2−1.26−1−1001121.26
Step 2
Plot each graph on the same coordinate system.
(x2+y2-1)3=x2(x2+y2−1)3=x2
y3y3
Step 3