Enter a problem...
Algebra Examples
3e4x-9e2x-15=03e4x−9e2x−15=0
Step 1
Rewrite e4xe4x as exponentiation.
3(ex)4-9e2x-15=03(ex)4−9e2x−15=0
Step 2
Rewrite e2xe2x as exponentiation.
3(ex)4-9(ex)2-15=03(ex)4−9(ex)2−15=0
Step 3
Substitute uu for exex.
3u4-9u2-15=03u4−9u2−15=0
Step 4
Step 4.1
Substitute u=u2u=u2 into the equation. This will make the quadratic formula easy to use.
3u2-9u-15=03u2−9u−15=0
u=u2u=u2
Step 4.2
Factor 33 out of 3u2-9u-153u2−9u−15.
Step 4.2.1
Factor 33 out of 3u23u2.
3(u2)-9u-15=03(u2)−9u−15=0
Step 4.2.2
Factor 33 out of -9u−9u.
3(u2)+3(-3u)-15=03(u2)+3(−3u)−15=0
Step 4.2.3
Factor 33 out of -15−15.
3u2+3(-3u)+3⋅-5=03u2+3(−3u)+3⋅−5=0
Step 4.2.4
Factor 33 out of 3u2+3(-3u)3u2+3(−3u).
3(u2-3u)+3⋅-5=03(u2−3u)+3⋅−5=0
Step 4.2.5
Factor 33 out of 3(u2-3u)+3⋅-53(u2−3u)+3⋅−5.
3(u2-3u-5)=03(u2−3u−5)=0
3(u2-3u-5)=03(u2−3u−5)=0
Step 4.3
Divide each term in 3(u2-3u-5)=03(u2−3u−5)=0 by 33 and simplify.
Step 4.3.1
Divide each term in 3(u2-3u-5)=03(u2−3u−5)=0 by 33.
3(u2-3u-5)3=033(u2−3u−5)3=03
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of 33.
Step 4.3.2.1.1
Cancel the common factor.
3(u2-3u-5)3=03
Step 4.3.2.1.2
Divide u2-3u-5 by 1.
u2-3u-5=03
u2-3u-5=03
u2-3u-5=03
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Divide 0 by 3.
u2-3u-5=0
u2-3u-5=0
u2-3u-5=0
Step 4.4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.5
Substitute the values a=1, b=-3, and c=-5 into the quadratic formula and solve for u.
3±√(-3)2-4⋅(1⋅-5)2⋅1
Step 4.6
Simplify.
Step 4.6.1
Simplify the numerator.
Step 4.6.1.1
Raise -3 to the power of 2.
u=3±√9-4⋅1⋅-52⋅1
Step 4.6.1.2
Multiply -4⋅1⋅-5.
Step 4.6.1.2.1
Multiply -4 by 1.
u=3±√9-4⋅-52⋅1
Step 4.6.1.2.2
Multiply -4 by -5.
u=3±√9+202⋅1
u=3±√9+202⋅1
Step 4.6.1.3
Add 9 and 20.
u=3±√292⋅1
u=3±√292⋅1
Step 4.6.2
Multiply 2 by 1.
u=3±√292
u=3±√292
Step 4.7
The final answer is the combination of both solutions.
u=3+√292,3-√292
Step 4.8
Substitute the real value of u=u2 back into the solved equation.
u2=4.1925824
(u2)1=-1.1925824
Step 4.9
Solve the first equation for u.
u2=4.1925824
Step 4.10
Solve the equation for u.
Step 4.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±√4.1925824
Step 4.10.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.10.2.1
First, use the positive value of the ± to find the first solution.
u=√4.1925824
Step 4.10.2.2
Next, use the negative value of the ± to find the second solution.
u=-√4.1925824
Step 4.10.2.3
The complete solution is the result of both the positive and negative portions of the solution.
u=√4.1925824,-√4.1925824
u=√4.1925824,-√4.1925824
u=√4.1925824,-√4.1925824
Step 4.11
Solve the second equation for u.
(u2)1=-1.1925824
Step 4.12
Solve the equation for u.
Step 4.12.1
Remove parentheses.
u2=-1.1925824
Step 4.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±√-1.1925824
Step 4.12.3
Simplify ±√-1.1925824.
Step 4.12.3.1
Rewrite -1.1925824 as -1(1.1925824).
u=±√-1(1.1925824)
Step 4.12.3.2
Rewrite √-1(1.1925824) as √-1⋅√1.1925824.
u=±√-1⋅√1.1925824
Step 4.12.3.3
Rewrite √-1 as i.
u=±i√1.1925824
u=±i√1.1925824
Step 4.12.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.12.4.1
First, use the positive value of the ± to find the first solution.
u=i√1.1925824
Step 4.12.4.2
Next, use the negative value of the ± to find the second solution.
u=-i√1.1925824
Step 4.12.4.3
The complete solution is the result of both the positive and negative portions of the solution.
u=i√1.1925824,-i√1.1925824
u=i√1.1925824,-i√1.1925824
u=i√1.1925824,-i√1.1925824
Step 4.13
The solution to 3u4-9u2-15=0 is u=√4.1925824,-√4.1925824,i√1.1925824,-i√1.1925824.
u=√4.1925824,-√4.1925824,i√1.1925824,-i√1.1925824
u=√4.1925824,-√4.1925824,i√1.1925824,-i√1.1925824
Step 5
Substitute √4.1925824 for u in u=ex.
√4.1925824=ex
Step 6
Step 6.1
Rewrite the equation as ex=√4.1925824.
ex=√4.1925824
Step 6.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(√4.1925824)
Step 6.3
Expand the left side.
Step 6.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(√4.1925824)
Step 6.3.2
The natural logarithm of e is 1.
x⋅1=ln(√4.1925824)
Step 6.3.3
Multiply x by 1.
x=ln(√4.1925824)
x=ln(√4.1925824)
x=ln(√4.1925824)
Step 7
Substitute -√4.1925824 for u in u=ex.
-√4.1925824=ex
Step 8
Step 8.1
Rewrite the equation as ex=-√4.1925824.
ex=-√4.1925824
Step 8.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(-√4.1925824)
Step 8.3
The equation cannot be solved because ln(-√4.1925824) is undefined.
Undefined
Step 8.4
There is no solution for ex=-√4.1925824
No solution
No solution
Step 9
Substitute i√1.1925824 for u in u=ex.
i√1.1925824=ex
Step 10
Step 10.1
Rewrite the equation as ex=i√1.1925824.
ex=i√1.1925824
Step 10.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(i√1.1925824)
Step 10.3
Expand the left side.
Step 10.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(i√1.1925824)
Step 10.3.2
The natural logarithm of e is 1.
x⋅1=ln(i√1.1925824)
Step 10.3.3
Multiply x by 1.
x=ln(i√1.1925824)
x=ln(i√1.1925824)
Step 10.4
Expand the right side.
Step 10.4.1
Rewrite ln(i√1.1925824) as ln(i)+ln(√1.1925824).
x=ln(i)+ln(√1.1925824)
Step 10.4.2
Use n√ax=axn to rewrite √1.1925824 as 1.192582412.
x=ln(i)+ln(1.192582412)
Step 10.4.3
Expand ln(1.192582412) by moving 12 outside the logarithm.
x=ln(i)+12ln(1.1925824)
Step 10.4.4
Combine 12 and ln(1.1925824).
x=ln(i)+ln(1.1925824)2
x=ln(i)+ln(1.1925824)2
Step 10.5
Simplify.
Step 10.5.1
Simplify each term.
Step 10.5.1.1
Rewrite ln(1.1925824)2 as 12ln(1.1925824).
x=ln(i)+12ln(1.1925824)
Step 10.5.1.2
Simplify 12ln(1.1925824) by moving 12 inside the logarithm.
x=ln(i)+ln(1.192582412)
Step 10.5.1.3
Rewrite 1.1925824 as 1.092054212.
x=ln(i)+ln((1.092054212)12)
Step 10.5.1.4
Apply the power rule and multiply exponents, (am)n=amn.
x=ln(i)+ln(1.092054212(12))
Step 10.5.1.5
Cancel the common factor of 2.
Step 10.5.1.5.1
Cancel the common factor.
x=ln(i)+ln(1.092054212(12))
Step 10.5.1.5.2
Rewrite the expression.
x=ln(i)+ln(1.092054211)
x=ln(i)+ln(1.092054211)
Step 10.5.1.6
Evaluate the exponent.
x=ln(i)+ln(1.09205421)
x=ln(i)+ln(1.09205421)
Step 10.5.2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
x=ln(i⋅1.09205421)
Step 10.5.3
Move 1.09205421 to the left of i.
x=ln(1.09205421i)
x=ln(1.09205421i)
x=ln(1.09205421i)
Step 11
Substitute -i√1.1925824 for u in u=ex.
-i√1.1925824=ex
Step 12
Step 12.1
Rewrite the equation as ex=-i√1.1925824.
ex=-i√1.1925824
Step 12.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(-i√1.1925824)
Step 12.3
The equation cannot be solved because ln(-i√1.1925824) is undefined.
Undefined
Step 12.4
There is no solution for ex=-i√1.1925824
No solution
No solution
Step 13
List the solutions that makes the equation true.
x=ln(√4.1925824),ln(1.09205421i)