Algebra Examples

Solve for x 3e^(4x)-9e^(2x)-15=0
3e4x-9e2x-15=03e4x9e2x15=0
Step 1
Rewrite e4xe4x as exponentiation.
3(ex)4-9e2x-15=03(ex)49e2x15=0
Step 2
Rewrite e2xe2x as exponentiation.
3(ex)4-9(ex)2-15=03(ex)49(ex)215=0
Step 3
Substitute uu for exex.
3u4-9u2-15=03u49u215=0
Step 4
Solve for uu.
Tap for more steps...
Step 4.1
Substitute u=u2u=u2 into the equation. This will make the quadratic formula easy to use.
3u2-9u-15=03u29u15=0
u=u2u=u2
Step 4.2
Factor 33 out of 3u2-9u-153u29u15.
Tap for more steps...
Step 4.2.1
Factor 33 out of 3u23u2.
3(u2)-9u-15=03(u2)9u15=0
Step 4.2.2
Factor 33 out of -9u9u.
3(u2)+3(-3u)-15=03(u2)+3(3u)15=0
Step 4.2.3
Factor 33 out of -1515.
3u2+3(-3u)+3-5=03u2+3(3u)+35=0
Step 4.2.4
Factor 33 out of 3u2+3(-3u)3u2+3(3u).
3(u2-3u)+3-5=03(u23u)+35=0
Step 4.2.5
Factor 33 out of 3(u2-3u)+3-53(u23u)+35.
3(u2-3u-5)=03(u23u5)=0
3(u2-3u-5)=03(u23u5)=0
Step 4.3
Divide each term in 3(u2-3u-5)=03(u23u5)=0 by 33 and simplify.
Tap for more steps...
Step 4.3.1
Divide each term in 3(u2-3u-5)=03(u23u5)=0 by 33.
3(u2-3u-5)3=033(u23u5)3=03
Step 4.3.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 4.3.2.1.1
Cancel the common factor.
3(u2-3u-5)3=03
Step 4.3.2.1.2
Divide u2-3u-5 by 1.
u2-3u-5=03
u2-3u-5=03
u2-3u-5=03
Step 4.3.3
Simplify the right side.
Tap for more steps...
Step 4.3.3.1
Divide 0 by 3.
u2-3u-5=0
u2-3u-5=0
u2-3u-5=0
Step 4.4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.5
Substitute the values a=1, b=-3, and c=-5 into the quadratic formula and solve for u.
3±(-3)2-4(1-5)21
Step 4.6
Simplify.
Tap for more steps...
Step 4.6.1
Simplify the numerator.
Tap for more steps...
Step 4.6.1.1
Raise -3 to the power of 2.
u=3±9-41-521
Step 4.6.1.2
Multiply -41-5.
Tap for more steps...
Step 4.6.1.2.1
Multiply -4 by 1.
u=3±9-4-521
Step 4.6.1.2.2
Multiply -4 by -5.
u=3±9+2021
u=3±9+2021
Step 4.6.1.3
Add 9 and 20.
u=3±2921
u=3±2921
Step 4.6.2
Multiply 2 by 1.
u=3±292
u=3±292
Step 4.7
The final answer is the combination of both solutions.
u=3+292,3-292
Step 4.8
Substitute the real value of u=u2 back into the solved equation.
u2=4.1925824
(u2)1=-1.1925824
Step 4.9
Solve the first equation for u.
u2=4.1925824
Step 4.10
Solve the equation for u.
Tap for more steps...
Step 4.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±4.1925824
Step 4.10.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.10.2.1
First, use the positive value of the ± to find the first solution.
u=4.1925824
Step 4.10.2.2
Next, use the negative value of the ± to find the second solution.
u=-4.1925824
Step 4.10.2.3
The complete solution is the result of both the positive and negative portions of the solution.
u=4.1925824,-4.1925824
u=4.1925824,-4.1925824
u=4.1925824,-4.1925824
Step 4.11
Solve the second equation for u.
(u2)1=-1.1925824
Step 4.12
Solve the equation for u.
Tap for more steps...
Step 4.12.1
Remove parentheses.
u2=-1.1925824
Step 4.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±-1.1925824
Step 4.12.3
Simplify ±-1.1925824.
Tap for more steps...
Step 4.12.3.1
Rewrite -1.1925824 as -1(1.1925824).
u=±-1(1.1925824)
Step 4.12.3.2
Rewrite -1(1.1925824) as -11.1925824.
u=±-11.1925824
Step 4.12.3.3
Rewrite -1 as i.
u=±i1.1925824
u=±i1.1925824
Step 4.12.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.12.4.1
First, use the positive value of the ± to find the first solution.
u=i1.1925824
Step 4.12.4.2
Next, use the negative value of the ± to find the second solution.
u=-i1.1925824
Step 4.12.4.3
The complete solution is the result of both the positive and negative portions of the solution.
u=i1.1925824,-i1.1925824
u=i1.1925824,-i1.1925824
u=i1.1925824,-i1.1925824
Step 4.13
The solution to 3u4-9u2-15=0 is u=4.1925824,-4.1925824,i1.1925824,-i1.1925824.
u=4.1925824,-4.1925824,i1.1925824,-i1.1925824
u=4.1925824,-4.1925824,i1.1925824,-i1.1925824
Step 5
Substitute 4.1925824 for u in u=ex.
4.1925824=ex
Step 6
Solve 4.1925824=ex.
Tap for more steps...
Step 6.1
Rewrite the equation as ex=4.1925824.
ex=4.1925824
Step 6.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(4.1925824)
Step 6.3
Expand the left side.
Tap for more steps...
Step 6.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(4.1925824)
Step 6.3.2
The natural logarithm of e is 1.
x1=ln(4.1925824)
Step 6.3.3
Multiply x by 1.
x=ln(4.1925824)
x=ln(4.1925824)
x=ln(4.1925824)
Step 7
Substitute -4.1925824 for u in u=ex.
-4.1925824=ex
Step 8
Solve -4.1925824=ex.
Tap for more steps...
Step 8.1
Rewrite the equation as ex=-4.1925824.
ex=-4.1925824
Step 8.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(-4.1925824)
Step 8.3
The equation cannot be solved because ln(-4.1925824) is undefined.
Undefined
Step 8.4
There is no solution for ex=-4.1925824
No solution
No solution
Step 9
Substitute i1.1925824 for u in u=ex.
i1.1925824=ex
Step 10
Solve i1.1925824=ex.
Tap for more steps...
Step 10.1
Rewrite the equation as ex=i1.1925824.
ex=i1.1925824
Step 10.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(i1.1925824)
Step 10.3
Expand the left side.
Tap for more steps...
Step 10.3.1
Expand ln(ex) by moving x outside the logarithm.
xln(e)=ln(i1.1925824)
Step 10.3.2
The natural logarithm of e is 1.
x1=ln(i1.1925824)
Step 10.3.3
Multiply x by 1.
x=ln(i1.1925824)
x=ln(i1.1925824)
Step 10.4
Expand the right side.
Tap for more steps...
Step 10.4.1
Rewrite ln(i1.1925824) as ln(i)+ln(1.1925824).
x=ln(i)+ln(1.1925824)
Step 10.4.2
Use nax=axn to rewrite 1.1925824 as 1.192582412.
x=ln(i)+ln(1.192582412)
Step 10.4.3
Expand ln(1.192582412) by moving 12 outside the logarithm.
x=ln(i)+12ln(1.1925824)
Step 10.4.4
Combine 12 and ln(1.1925824).
x=ln(i)+ln(1.1925824)2
x=ln(i)+ln(1.1925824)2
Step 10.5
Simplify.
Tap for more steps...
Step 10.5.1
Simplify each term.
Tap for more steps...
Step 10.5.1.1
Rewrite ln(1.1925824)2 as 12ln(1.1925824).
x=ln(i)+12ln(1.1925824)
Step 10.5.1.2
Simplify 12ln(1.1925824) by moving 12 inside the logarithm.
x=ln(i)+ln(1.192582412)
Step 10.5.1.3
Rewrite 1.1925824 as 1.092054212.
x=ln(i)+ln((1.092054212)12)
Step 10.5.1.4
Apply the power rule and multiply exponents, (am)n=amn.
x=ln(i)+ln(1.092054212(12))
Step 10.5.1.5
Cancel the common factor of 2.
Tap for more steps...
Step 10.5.1.5.1
Cancel the common factor.
x=ln(i)+ln(1.092054212(12))
Step 10.5.1.5.2
Rewrite the expression.
x=ln(i)+ln(1.092054211)
x=ln(i)+ln(1.092054211)
Step 10.5.1.6
Evaluate the exponent.
x=ln(i)+ln(1.09205421)
x=ln(i)+ln(1.09205421)
Step 10.5.2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
x=ln(i1.09205421)
Step 10.5.3
Move 1.09205421 to the left of i.
x=ln(1.09205421i)
x=ln(1.09205421i)
x=ln(1.09205421i)
Step 11
Substitute -i1.1925824 for u in u=ex.
-i1.1925824=ex
Step 12
Solve -i1.1925824=ex.
Tap for more steps...
Step 12.1
Rewrite the equation as ex=-i1.1925824.
ex=-i1.1925824
Step 12.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex)=ln(-i1.1925824)
Step 12.3
The equation cannot be solved because ln(-i1.1925824) is undefined.
Undefined
Step 12.4
There is no solution for ex=-i1.1925824
No solution
No solution
Step 13
List the solutions that makes the equation true.
x=ln(4.1925824),ln(1.09205421i)
 [x2  12  π  xdx ]