Enter a problem...
Algebra Examples
√c+9-√c>√3√c+9−√c>√3
Step 1
Add √c to both sides of the inequality.
√c+9>√3+√c
Step 2
To remove the radical on the left side of the inequality, square both sides of the inequality.
√c+92>(√3+√c)2
Step 3
Step 3.1
Use n√ax=axn to rewrite √c+9 as (c+9)12.
((c+9)12)2>(√3+√c)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((c+9)12)2.
Step 3.2.1.1
Multiply the exponents in ((c+9)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(c+9)12⋅2>(√3+√c)2
Step 3.2.1.1.2
Cancel the common factor of 2.
Step 3.2.1.1.2.1
Cancel the common factor.
(c+9)12⋅2>(√3+√c)2
Step 3.2.1.1.2.2
Rewrite the expression.
(c+9)1>(√3+√c)2
(c+9)1>(√3+√c)2
(c+9)1>(√3+√c)2
Step 3.2.1.2
Simplify.
c+9>(√3+√c)2
c+9>(√3+√c)2
c+9>(√3+√c)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (√3+√c)2.
Step 3.3.1.1
Rewrite (√3+√c)2 as (√3+√c)(√3+√c).
c+9>(√3+√c)(√3+√c)
Step 3.3.1.2
Expand (√3+√c)(√3+√c) using the FOIL Method.
Step 3.3.1.2.1
Apply the distributive property.
c+9>√3(√3+√c)+√c(√3+√c)
Step 3.3.1.2.2
Apply the distributive property.
c+9>√3√3+√3√c+√c(√3+√c)
Step 3.3.1.2.3
Apply the distributive property.
c+9>√3√3+√3√c+√c√3+√c√c
c+9>√3√3+√3√c+√c√3+√c√c
Step 3.3.1.3
Simplify and combine like terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Combine using the product rule for radicals.
c+9>√3⋅3+√3√c+√c√3+√c√c
Step 3.3.1.3.1.2
Multiply 3 by 3.
c+9>√9+√3√c+√c√3+√c√c
Step 3.3.1.3.1.3
Rewrite 9 as 32.
c+9>√32+√3√c+√c√3+√c√c
Step 3.3.1.3.1.4
Pull terms out from under the radical, assuming positive real numbers.
c+9>3+√3√c+√c√3+√c√c
Step 3.3.1.3.1.5
Combine using the product rule for radicals.
c+9>3+√3c+√c√3+√c√c
Step 3.3.1.3.1.6
Combine using the product rule for radicals.
c+9>3+√3c+√c⋅3+√c√c
Step 3.3.1.3.1.7
Multiply √c√c.
Step 3.3.1.3.1.7.1
Raise √c to the power of 1.
c+9>3+√3c+√c⋅3+√c1√c
Step 3.3.1.3.1.7.2
Raise √c to the power of 1.
c+9>3+√3c+√c⋅3+√c1√c1
Step 3.3.1.3.1.7.3
Use the power rule aman=am+n to combine exponents.
c+9>3+√3c+√c⋅3+√c1+1
Step 3.3.1.3.1.7.4
Add 1 and 1.
c+9>3+√3c+√c⋅3+√c2
c+9>3+√3c+√c⋅3+√c2
Step 3.3.1.3.1.8
Rewrite √c2 as c.
Step 3.3.1.3.1.8.1
Use n√ax=axn to rewrite √c as c12.
c+9>3+√3c+√c⋅3+(c12)2
Step 3.3.1.3.1.8.2
Apply the power rule and multiply exponents, (am)n=amn.
c+9>3+√3c+√c⋅3+c12⋅2
Step 3.3.1.3.1.8.3
Combine 12 and 2.
c+9>3+√3c+√c⋅3+c22
Step 3.3.1.3.1.8.4
Cancel the common factor of 2.
Step 3.3.1.3.1.8.4.1
Cancel the common factor.
c+9>3+√3c+√c⋅3+c22
Step 3.3.1.3.1.8.4.2
Rewrite the expression.
c+9>3+√3c+√c⋅3+c1
c+9>3+√3c+√c⋅3+c1
Step 3.3.1.3.1.8.5
Simplify.
c+9>3+√3c+√c⋅3+c
c+9>3+√3c+√c⋅3+c
c+9>3+√3c+√c⋅3+c
Step 3.3.1.3.2
Add √3c and √c⋅3.
Step 3.3.1.3.2.1
Reorder c and 3.
c+9>3+√3c+√3⋅c+c
Step 3.3.1.3.2.2
Add √3c and √3⋅c.
c+9>3+2√3c+c
c+9>3+2√3c+c
c+9>3+2√3c+c
c+9>3+2√3c+c
c+9>3+2√3c+c
c+9>3+2√3c+c
Step 4
Step 4.1
Rewrite so 2√3c is on the left side of the inequality.
3+2√3c+c<c+9
Step 4.2
Move all terms not containing 2√3c to the right side of the inequality.
Step 4.2.1
Subtract 3 from both sides of the inequality.
2√3c+c<c+9-3
Step 4.2.2
Subtract c from both sides of the inequality.
2√3c<c+9-3-c
Step 4.2.3
Combine the opposite terms in c+9-3-c.
Step 4.2.3.1
Subtract c from c.
2√3c<0+9-3
Step 4.2.3.2
Add 0 and 9.
2√3c<9-3
2√3c<9-3
Step 4.2.4
Subtract 3 from 9.
2√3c<6
2√3c<6
2√3c<6
Step 5
To remove the radical on the left side of the inequality, square both sides of the inequality.
(2√3c)2<62
Step 6
Step 6.1
Use n√ax=axn to rewrite √3c as (3c)12.
(2(3c)12)2<62
Step 6.2
Simplify the left side.
Step 6.2.1
Simplify (2(3c)12)2.
Step 6.2.1.1
Apply the product rule to 3c.
(2(312c12))2<62
Step 6.2.1.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 6.2.1.2.1
Apply the product rule to 2⋅312c12.
(2⋅312)2(c12)2<62
Step 6.2.1.2.2
Apply the product rule to 2⋅312.
22⋅(312)2(c12)2<62
22⋅(312)2(c12)2<62
Step 6.2.1.3
Raise 2 to the power of 2.
4⋅(312)2(c12)2<62
Step 6.2.1.4
Multiply the exponents in (312)2.
Step 6.2.1.4.1
Apply the power rule and multiply exponents, (am)n=amn.
4⋅312⋅2(c12)2<62
Step 6.2.1.4.2
Cancel the common factor of 2.
Step 6.2.1.4.2.1
Cancel the common factor.
4⋅312⋅2(c12)2<62
Step 6.2.1.4.2.2
Rewrite the expression.
4⋅31(c12)2<62
4⋅31(c12)2<62
4⋅31(c12)2<62
Step 6.2.1.5
Evaluate the exponent.
4⋅3(c12)2<62
Step 6.2.1.6
Multiply 4 by 3.
12(c12)2<62
Step 6.2.1.7
Multiply the exponents in (c12)2.
Step 6.2.1.7.1
Apply the power rule and multiply exponents, (am)n=amn.
12c12⋅2<62
Step 6.2.1.7.2
Cancel the common factor of 2.
Step 6.2.1.7.2.1
Cancel the common factor.
12c12⋅2<62
Step 6.2.1.7.2.2
Rewrite the expression.
12c1<62
12c1<62
12c1<62
Step 6.2.1.8
Simplify.
12c<62
12c<62
12c<62
Step 6.3
Simplify the right side.
Step 6.3.1
Raise 6 to the power of 2.
12c<36
12c<36
12c<36
Step 7
Step 7.1
Divide each term in 12c<36 by 12.
12c12<3612
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of 12.
Step 7.2.1.1
Cancel the common factor.
12c12<3612
Step 7.2.1.2
Divide c by 1.
c<3612
c<3612
c<3612
Step 7.3
Simplify the right side.
Step 7.3.1
Divide 36 by 12.
c<3
c<3
c<3
Step 8
Step 8.1
Set the radicand in √c+9 greater than or equal to 0 to find where the expression is defined.
c+9≥0
Step 8.2
Subtract 9 from both sides of the inequality.
c≥-9
Step 8.3
Set the radicand in √c greater than or equal to 0 to find where the expression is defined.
c≥0
Step 8.4
The domain is all values of c that make the expression defined.
[0,∞)
[0,∞)
Step 9
Use each root to create test intervals.
c<0
0<c<3
c>3
Step 10
Step 10.1
Test a value on the interval c<0 to see if it makes the inequality true.
Step 10.1.1
Choose a value on the interval c<0 and see if this value makes the original inequality true.
c=-2
Step 10.1.2
Replace c with -2 in the original inequality.
√(-2)+9-√-2>√3
Step 10.1.3
The left side is not equal to the right side, which means that the given statement is false.
False
False
Step 10.2
Test a value on the interval 0<c<3 to see if it makes the inequality true.
Step 10.2.1
Choose a value on the interval 0<c<3 and see if this value makes the original inequality true.
c=2
Step 10.2.2
Replace c with 2 in the original inequality.
√(2)+9-√2>√3
Step 10.2.3
The left side 1.90241122 is greater than the right side 1.7320508, which means that the given statement is always true.
True
True
Step 10.3
Test a value on the interval c>3 to see if it makes the inequality true.
Step 10.3.1
Choose a value on the interval c>3 and see if this value makes the original inequality true.
c=6
Step 10.3.2
Replace c with 6 in the original inequality.
√(6)+9-√6>√3
Step 10.3.3
The left side 1.4234936 is not greater than the right side 1.7320508, which means that the given statement is false.
False
False
Step 10.4
Compare the intervals to determine which ones satisfy the original inequality.
c<0 False
0<c<3 True
c>3 False
c<0 False
0<c<3 True
c>3 False
Step 11
The solution consists of all of the true intervals.
0<c<3
Step 12