Algebra Examples

Factor by Grouping a^8-a^2b^6
a8-a2b6a8a2b6
Step 1
Factor out the GCF of a2a2 from a8-a2b6a8a2b6.
Tap for more steps...
Step 1.1
Factor out the GCF of a2a2 from each term in the polynomial.
Tap for more steps...
Step 1.1.1
Factor out the GCF of a2a2 from the expression a8a8.
a2(a6)-a2b6a2(a6)a2b6
Step 1.1.2
Factor out the GCF of a2a2 from the expression -a2b6a2b6.
a2(a6)+a2(-b6)a2(a6)+a2(b6)
a2(a6)+a2(-b6)a2(a6)+a2(b6)
Step 1.2
Since all the terms share a common factor of a2a2, it can be factored out of each term.
a2(a6-b6)a2(a6b6)
a2(a6-b6)a2(a6b6)
Step 2
Rewrite a6a6 as (a2)3(a2)3.
a2((a2)3-b6)a2((a2)3b6)
Step 3
Rewrite b6b6 as (b2)3(b2)3.
a2((a2)3-(b2)3)a2((a2)3(b2)3)
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=a2a=a2 and b=b2b=b2.
a2((a2-b2)((a2)2+a2b2+(b2)2))a2((a2b2)((a2)2+a2b2+(b2)2))
Step 5
Simplify.
Tap for more steps...
Step 5.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=aa=a and b=bb=b.
a2((a+b)(a-b)((a2)2+a2b2+(b2)2))a2((a+b)(ab)((a2)2+a2b2+(b2)2))
Step 5.2
Multiply the exponents in (a2)2(a2)2.
Tap for more steps...
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a2((a+b)(a-b)(a22+a2b2+(b2)2))a2((a+b)(ab)(a22+a2b2+(b2)2))
Step 5.2.2
Multiply 22 by 22.
a2((a+b)(a-b)(a4+a2b2+(b2)2))a2((a+b)(ab)(a4+a2b2+(b2)2))
a2((a+b)(a-b)(a4+a2b2+(b2)2))a2((a+b)(ab)(a4+a2b2+(b2)2))
Step 5.3
Multiply the exponents in (b2)2(b2)2.
Tap for more steps...
Step 5.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a2((a+b)(a-b)(a4+a2b2+b22))a2((a+b)(ab)(a4+a2b2+b22))
Step 5.3.2
Multiply 22 by 22.
a2((a+b)(a-b)(a4+a2b2+b4))a2((a+b)(ab)(a4+a2b2+b4))
a2((a+b)(a-b)(a4+a2b2+b4))a2((a+b)(ab)(a4+a2b2+b4))
Step 5.4
Factor.
Tap for more steps...
Step 5.4.1
Rewrite a4+a2b2+b4a4+a2b2+b4 in a factored form.
Tap for more steps...
Step 5.4.1.1
Rewrite the middle term.
a2((a+b)(a-b)(a4+2a2b2-a2b2+b4))a2((a+b)(ab)(a4+2a2b2a2b2+b4))
Step 5.4.1.2
Rearrange terms.
a2((a+b)(a-b)(a4+2a2b2+b4-a2b2))a2((a+b)(ab)(a4+2a2b2+b4a2b2))
Step 5.4.1.3
Factor first three terms by perfect square rule.
a2((a+b)(a-b)((a2+b2)2-a2b2))a2((a+b)(ab)((a2+b2)2a2b2))
Step 5.4.1.4
Rewrite a2b2a2b2 as (ab)2(ab)2.
a2((a+b)(a-b)((a2+b2)2-(ab)2))a2((a+b)(ab)((a2+b2)2(ab)2))
Step 5.4.1.5
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=a2+b2a=a2+b2 and b=abb=ab.
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-(ab))))a2((a+b)(ab)((a2+b2+ab)(a2+b2(ab))))
Step 5.4.1.6
Remove parentheses.
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-ab)))a2((a+b)(ab)((a2+b2+ab)(a2+b2ab)))
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-ab)))a2((a+b)(ab)((a2+b2+ab)(a2+b2ab)))
Step 5.4.2
Remove unnecessary parentheses.
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(ab)(a2+b2+ab)(a2+b2ab))
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(ab)(a2+b2+ab)(a2+b2ab))
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(ab)(a2+b2+ab)(a2+b2ab))
 [x2  12  π  xdx ]  x2  12  π  xdx