Enter a problem...
Algebra Examples
a8-a2b6a8−a2b6
Step 1
Step 1.1
Factor out the GCF of a2a2 from each term in the polynomial.
Step 1.1.1
Factor out the GCF of a2a2 from the expression a8a8.
a2(a6)-a2b6a2(a6)−a2b6
Step 1.1.2
Factor out the GCF of a2a2 from the expression -a2b6−a2b6.
a2(a6)+a2(-b6)a2(a6)+a2(−b6)
a2(a6)+a2(-b6)a2(a6)+a2(−b6)
Step 1.2
Since all the terms share a common factor of a2a2, it can be factored out of each term.
a2(a6-b6)a2(a6−b6)
a2(a6-b6)a2(a6−b6)
Step 2
Rewrite a6a6 as (a2)3(a2)3.
a2((a2)3-b6)a2((a2)3−b6)
Step 3
Rewrite b6b6 as (b2)3(b2)3.
a2((a2)3-(b2)3)a2((a2)3−(b2)3)
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=a2a=a2 and b=b2b=b2.
a2((a2-b2)((a2)2+a2b2+(b2)2))a2((a2−b2)((a2)2+a2b2+(b2)2))
Step 5
Step 5.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=aa=a and b=bb=b.
a2((a+b)(a-b)((a2)2+a2b2+(b2)2))a2((a+b)(a−b)((a2)2+a2b2+(b2)2))
Step 5.2
Multiply the exponents in (a2)2(a2)2.
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a2((a+b)(a-b)(a2⋅2+a2b2+(b2)2))a2((a+b)(a−b)(a2⋅2+a2b2+(b2)2))
Step 5.2.2
Multiply 22 by 22.
a2((a+b)(a-b)(a4+a2b2+(b2)2))a2((a+b)(a−b)(a4+a2b2+(b2)2))
a2((a+b)(a-b)(a4+a2b2+(b2)2))a2((a+b)(a−b)(a4+a2b2+(b2)2))
Step 5.3
Multiply the exponents in (b2)2(b2)2.
Step 5.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a2((a+b)(a-b)(a4+a2b2+b2⋅2))a2((a+b)(a−b)(a4+a2b2+b2⋅2))
Step 5.3.2
Multiply 22 by 22.
a2((a+b)(a-b)(a4+a2b2+b4))a2((a+b)(a−b)(a4+a2b2+b4))
a2((a+b)(a-b)(a4+a2b2+b4))a2((a+b)(a−b)(a4+a2b2+b4))
Step 5.4
Factor.
Step 5.4.1
Rewrite a4+a2b2+b4a4+a2b2+b4 in a factored form.
Step 5.4.1.1
Rewrite the middle term.
a2((a+b)(a-b)(a4+2a2b2-a2b2+b4))a2((a+b)(a−b)(a4+2a2b2−a2b2+b4))
Step 5.4.1.2
Rearrange terms.
a2((a+b)(a-b)(a4+2a2b2+b4-a2b2))a2((a+b)(a−b)(a4+2a2b2+b4−a2b2))
Step 5.4.1.3
Factor first three terms by perfect square rule.
a2((a+b)(a-b)((a2+b2)2-a2b2))a2((a+b)(a−b)((a2+b2)2−a2b2))
Step 5.4.1.4
Rewrite a2b2a2b2 as (ab)2(ab)2.
a2((a+b)(a-b)((a2+b2)2-(ab)2))a2((a+b)(a−b)((a2+b2)2−(ab)2))
Step 5.4.1.5
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=a2+b2a=a2+b2 and b=abb=ab.
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-(ab))))a2((a+b)(a−b)((a2+b2+ab)(a2+b2−(ab))))
Step 5.4.1.6
Remove parentheses.
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-ab)))a2((a+b)(a−b)((a2+b2+ab)(a2+b2−ab)))
a2((a+b)(a-b)((a2+b2+ab)(a2+b2-ab)))a2((a+b)(a−b)((a2+b2+ab)(a2+b2−ab)))
Step 5.4.2
Remove unnecessary parentheses.
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(a−b)(a2+b2+ab)(a2+b2−ab))
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(a−b)(a2+b2+ab)(a2+b2−ab))
a2((a+b)(a-b)(a2+b2+ab)(a2+b2-ab))a2((a+b)(a−b)(a2+b2+ab)(a2+b2−ab))