Enter a problem...
Algebra Examples
(6z4+3z2-9)(3z2-6)-1(6z4+3z2−9)(3z2−6)−1
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
(6z4+3z2-9)13z2-6(6z4+3z2−9)13z2−6
Step 2
Step 2.1
Factor 33 out of 3z2-63z2−6.
Step 2.1.1
Factor 33 out of 3z23z2.
(6z4+3z2-9)13(z2)-6(6z4+3z2−9)13(z2)−6
Step 2.1.2
Factor 33 out of -6−6.
(6z4+3z2-9)13z2+3⋅-2(6z4+3z2−9)13z2+3⋅−2
Step 2.1.3
Factor 33 out of 3z2+3⋅-23z2+3⋅−2.
(6z4+3z2-9)13(z2-2)(6z4+3z2−9)13(z2−2)
(6z4+3z2-9)13(z2-2)(6z4+3z2−9)13(z2−2)
Step 2.2
Multiply 6z4+3z2-96z4+3z2−9 by 13(z2-2)13(z2−2).
6z4+3z2-93(z2-2)6z4+3z2−93(z2−2)
Step 2.3
Cancel the common factor of 6z4+3z2-96z4+3z2−9 and 33.
Step 2.3.1
Factor 33 out of 6z46z4.
3(2z4)+3z2-93(z2-2)3(2z4)+3z2−93(z2−2)
Step 2.3.2
Factor 33 out of 3z23z2.
3(2z4)+3(z2)-93(z2-2)3(2z4)+3(z2)−93(z2−2)
Step 2.3.3
Factor 3 out of 3(2z4)+3(z2).
3(2z4+z2)-93(z2-2)
Step 2.3.4
Factor 3 out of -9.
3(2z4+z2)+3⋅-33(z2-2)
Step 2.3.5
Factor 3 out of 3(2z4+z2)+3(-3).
3(2z4+z2-3)3(z2-2)
Step 2.3.6
Cancel the common factors.
Step 2.3.6.1
Cancel the common factor.
3(2z4+z2-3)3(z2-2)
Step 2.3.6.2
Rewrite the expression.
2z4+z2-3z2-2
2z4+z2-3z2-2
2z4+z2-3z2-2
2z4+z2-3z2-2
Step 3
Step 3.1
Rewrite z4 as (z2)2.
2(z2)2+z2-3z2-2
Step 3.2
Let u=z2. Substitute u for all occurrences of z2.
2u2+u-3z2-2
Step 3.3
Factor by grouping.
Step 3.3.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=2⋅-3=-6 and whose sum is b=1.
Step 3.3.1.1
Multiply by 1.
2u2+1u-3z2-2
Step 3.3.1.2
Rewrite 1 as -2 plus 3
2u2+(-2+3)u-3z2-2
Step 3.3.1.3
Apply the distributive property.
2u2-2u+3u-3z2-2
2u2-2u+3u-3z2-2
Step 3.3.2
Factor out the greatest common factor from each group.
Step 3.3.2.1
Group the first two terms and the last two terms.
(2u2-2u)+3u-3z2-2
Step 3.3.2.2
Factor out the greatest common factor (GCF) from each group.
2u(u-1)+3(u-1)z2-2
2u(u-1)+3(u-1)z2-2
Step 3.3.3
Factor the polynomial by factoring out the greatest common factor, u-1.
(u-1)(2u+3)z2-2
(u-1)(2u+3)z2-2
Step 3.4
Replace all occurrences of u with z2.
(z2-1)(2z2+3)z2-2
Step 3.5
Rewrite 1 as 12.
(z2-12)(2z2+3)z2-2
Step 3.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=z and b=1.
(z+1)(z-1)(2z2+3)z2-2
(z+1)(z-1)(2z2+3)z2-2