Enter a problem...
Algebra Examples
-4y=-2x+8−4y=−2x+8 and 3x-6y=63x−6y=6
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Divide each term in -4y=-2x+8−4y=−2x+8 by -4−4 and simplify.
Step 1.1.2.1
Divide each term in -4y=-2x+8−4y=−2x+8 by -4−4.
-4y-4=-2x-4+8-4−4y−4=−2x−4+8−4
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of -4−4.
Step 1.1.2.2.1.1
Cancel the common factor.
-4y-4=-2x-4+8-4
Step 1.1.2.2.1.2
Divide y by 1.
y=-2x-4+8-4
y=-2x-4+8-4
y=-2x-4+8-4
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Simplify each term.
Step 1.1.2.3.1.1
Cancel the common factor of -2 and -4.
Step 1.1.2.3.1.1.1
Factor -2 out of -2x.
y=-2(x)-4+8-4
Step 1.1.2.3.1.1.2
Cancel the common factors.
Step 1.1.2.3.1.1.2.1
Factor -2 out of -4.
y=-2(x)-2(2)+8-4
Step 1.1.2.3.1.1.2.2
Cancel the common factor.
y=-2x-2⋅2+8-4
Step 1.1.2.3.1.1.2.3
Rewrite the expression.
y=x2+8-4
y=x2+8-4
y=x2+8-4
Step 1.1.2.3.1.2
Divide 8 by -4.
y=x2-2
y=x2-2
y=x2-2
y=x2-2
Step 1.1.3
Reorder terms.
y=12x-2
y=12x-2
Step 1.2
Find the values of m and b using the form y=mx+b.
m1=12
b=-2
m1=12
b=-2
Step 2
Step 2.1
Rewrite in slope-intercept form.
Step 2.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 2.1.2
Subtract 3x from both sides of the equation.
-6y=6-3x
Step 2.1.3
Divide each term in -6y=6-3x by -6 and simplify.
Step 2.1.3.1
Divide each term in -6y=6-3x by -6.
-6y-6=6-6+-3x-6
Step 2.1.3.2
Simplify the left side.
Step 2.1.3.2.1
Cancel the common factor of -6.
Step 2.1.3.2.1.1
Cancel the common factor.
-6y-6=6-6+-3x-6
Step 2.1.3.2.1.2
Divide y by 1.
y=6-6+-3x-6
y=6-6+-3x-6
y=6-6+-3x-6
Step 2.1.3.3
Simplify the right side.
Step 2.1.3.3.1
Simplify each term.
Step 2.1.3.3.1.1
Divide 6 by -6.
y=-1+-3x-6
Step 2.1.3.3.1.2
Cancel the common factor of -3 and -6.
Step 2.1.3.3.1.2.1
Factor -3 out of -3x.
y=-1+-3(x)-6
Step 2.1.3.3.1.2.2
Cancel the common factors.
Step 2.1.3.3.1.2.2.1
Factor -3 out of -6.
y=-1+-3(x)-3(2)
Step 2.1.3.3.1.2.2.2
Cancel the common factor.
y=-1+-3x-3⋅2
Step 2.1.3.3.1.2.2.3
Rewrite the expression.
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
Step 2.1.4
Write in y=mx+b form.
Step 2.1.4.1
Reorder -1 and x2.
y=x2-1
Step 2.1.4.2
Reorder terms.
y=12x-1
y=12x-1
y=12x-1
Step 2.2
Find the values of m and b using the form y=mx+b.
m2=12
b=-1
m2=12
b=-1
Step 3
Compare the slopes m of the two equations.
m1=12,m2=12
Step 4
Compare the decimal form of one slope with the negative reciprocal of the other slope. If they are equal, then the lines are perpendicular. If the they are not equal, then the lines are not perpendicular.
m1=0.5,m2=-2
Step 5
The equations are not perpendicular because the slopes of the two lines are not negative reciprocals.
Not Perpendicular
Step 6