Algebra Examples

Determine if Perpendicular -4y=-2x+8 and 3x-6y=6
-4y=-2x+84y=2x+8 and 3x-6y=63x6y=6
Step 1
Find the slope and y-intercept of the first equation.
Tap for more steps...
Step 1.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Divide each term in -4y=-2x+84y=2x+8 by -44 and simplify.
Tap for more steps...
Step 1.1.2.1
Divide each term in -4y=-2x+84y=2x+8 by -44.
-4y-4=-2x-4+8-44y4=2x4+84
Step 1.1.2.2
Simplify the left side.
Tap for more steps...
Step 1.1.2.2.1
Cancel the common factor of -44.
Tap for more steps...
Step 1.1.2.2.1.1
Cancel the common factor.
-4y-4=-2x-4+8-4
Step 1.1.2.2.1.2
Divide y by 1.
y=-2x-4+8-4
y=-2x-4+8-4
y=-2x-4+8-4
Step 1.1.2.3
Simplify the right side.
Tap for more steps...
Step 1.1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.1.2.3.1.1
Cancel the common factor of -2 and -4.
Tap for more steps...
Step 1.1.2.3.1.1.1
Factor -2 out of -2x.
y=-2(x)-4+8-4
Step 1.1.2.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.3.1.1.2.1
Factor -2 out of -4.
y=-2(x)-2(2)+8-4
Step 1.1.2.3.1.1.2.2
Cancel the common factor.
y=-2x-22+8-4
Step 1.1.2.3.1.1.2.3
Rewrite the expression.
y=x2+8-4
y=x2+8-4
y=x2+8-4
Step 1.1.2.3.1.2
Divide 8 by -4.
y=x2-2
y=x2-2
y=x2-2
y=x2-2
Step 1.1.3
Reorder terms.
y=12x-2
y=12x-2
Step 1.2
Find the values of m and b using the form y=mx+b.
m1=12
b=-2
m1=12
b=-2
Step 2
Find the slope and y-intercept of the second equation.
Tap for more steps...
Step 2.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 2.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 2.1.2
Subtract 3x from both sides of the equation.
-6y=6-3x
Step 2.1.3
Divide each term in -6y=6-3x by -6 and simplify.
Tap for more steps...
Step 2.1.3.1
Divide each term in -6y=6-3x by -6.
-6y-6=6-6+-3x-6
Step 2.1.3.2
Simplify the left side.
Tap for more steps...
Step 2.1.3.2.1
Cancel the common factor of -6.
Tap for more steps...
Step 2.1.3.2.1.1
Cancel the common factor.
-6y-6=6-6+-3x-6
Step 2.1.3.2.1.2
Divide y by 1.
y=6-6+-3x-6
y=6-6+-3x-6
y=6-6+-3x-6
Step 2.1.3.3
Simplify the right side.
Tap for more steps...
Step 2.1.3.3.1
Simplify each term.
Tap for more steps...
Step 2.1.3.3.1.1
Divide 6 by -6.
y=-1+-3x-6
Step 2.1.3.3.1.2
Cancel the common factor of -3 and -6.
Tap for more steps...
Step 2.1.3.3.1.2.1
Factor -3 out of -3x.
y=-1+-3(x)-6
Step 2.1.3.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 2.1.3.3.1.2.2.1
Factor -3 out of -6.
y=-1+-3(x)-3(2)
Step 2.1.3.3.1.2.2.2
Cancel the common factor.
y=-1+-3x-32
Step 2.1.3.3.1.2.2.3
Rewrite the expression.
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
y=-1+x2
Step 2.1.4
Write in y=mx+b form.
Tap for more steps...
Step 2.1.4.1
Reorder -1 and x2.
y=x2-1
Step 2.1.4.2
Reorder terms.
y=12x-1
y=12x-1
y=12x-1
Step 2.2
Find the values of m and b using the form y=mx+b.
m2=12
b=-1
m2=12
b=-1
Step 3
Compare the slopes m of the two equations.
m1=12,m2=12
Step 4
Compare the decimal form of one slope with the negative reciprocal of the other slope. If they are equal, then the lines are perpendicular. If the they are not equal, then the lines are not perpendicular.
m1=0.5,m2=-2
Step 5
The equations are not perpendicular because the slopes of the two lines are not negative reciprocals.
Not Perpendicular
Step 6
 [x2  12  π  xdx ]