Enter a problem...
Algebra Examples
(10x)231013=10(10x)231013=10
Step 1
Multiply both sides of the equation by 1013.
1013(10x)231013=1013⋅10
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify 1013(10x)231013.
Step 2.1.1.1
Cancel the common factor of 1013.
Step 2.1.1.1.1
Cancel the common factor.
1013(10x)231013=1013⋅10
Step 2.1.1.1.2
Rewrite the expression.
(10x)23=1013⋅10
(10x)23=1013⋅10
Step 2.1.1.2
Multiply the exponents in (10x)23.
Step 2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
10x23=1013⋅10
Step 2.1.1.2.2
Combine x and 23.
10x⋅23=1013⋅10
Step 2.1.1.2.3
Move 2 to the left of x.
102x3=1013⋅10
102x3=1013⋅10
102x3=1013⋅10
102x3=1013⋅10
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply 1013 by 10 by adding the exponents.
Step 2.2.1.1
Multiply 1013 by 10.
Step 2.2.1.1.1
Raise 10 to the power of 1.
102x3=1013⋅101
Step 2.2.1.1.2
Use the power rule aman=am+n to combine exponents.
102x3=1013+1
102x3=1013+1
Step 2.2.1.2
Write 1 as a fraction with a common denominator.
102x3=1013+33
Step 2.2.1.3
Combine the numerators over the common denominator.
102x3=101+33
Step 2.2.1.4
Add 1 and 3.
102x3=1043
102x3=1043
102x3=1043
102x3=1043
Step 3
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
2x3=43
Step 4
Step 4.1
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
2x=4
Step 4.2
Divide each term in 2x=4 by 2 and simplify.
Step 4.2.1
Divide each term in 2x=4 by 2.
2x2=42
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of 2.
Step 4.2.2.1.1
Cancel the common factor.
2x2=42
Step 4.2.2.1.2
Divide x by 1.
x=42
x=42
x=42
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Divide 4 by 2.
x=2
x=2
x=2
x=2