Algebra Examples

Graph y=2sin(-3theta-pi/2)+2
y=2sin(-3θ-π2)+2
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=2
b=-3
c=π2
d=2
Step 2
Find the amplitude |a|.
Amplitude: 2
Step 3
Find the period using the formula 2π|b|.
Tap for more steps...
Step 3.1
Find the period of 2sin(-3x-π2).
Tap for more steps...
Step 3.1.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.1.2
Replace b with -3 in the formula for period.
2π|-3|
Step 3.1.3
The absolute value is the distance between a number and zero. The distance between -3 and 0 is 3.
2π3
2π3
Step 3.2
Find the period of 2.
Tap for more steps...
Step 3.2.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2.2
Replace b with -3 in the formula for period.
2π|-3|
Step 3.2.3
The absolute value is the distance between a number and zero. The distance between -3 and 0 is 3.
2π3
2π3
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
2π3
2π3
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: π2-3
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: π21-3
Step 4.4
Move the negative in front of the fraction.
Phase Shift: π2(-13)
Step 4.5
Multiply π2(-13).
Tap for more steps...
Step 4.5.1
Multiply π2 by 13.
Phase Shift: -π23
Step 4.5.2
Multiply 2 by 3.
Phase Shift: -π6
Phase Shift: -π6
Phase Shift: -π6
Step 5
List the properties of the trigonometric function.
Amplitude: 2
Period: 2π3
Phase Shift: -π6 (π6 to the left)
Vertical Shift: 2
Step 6
Select a few points to graph.
Tap for more steps...
Step 6.1
Find the point at x=-π6.
Tap for more steps...
Step 6.1.1
Replace the variable x with -π6 in the expression.
f(-π6)=2sin(-3(-π6)-π2)+2
Step 6.1.2
Simplify the result.
Tap for more steps...
Step 6.1.2.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 6.1.2.1.1.1.1
Move the leading negative in -π6 into the numerator.
f(-π6)=2sin(-3-π6-π2)+2
Step 6.1.2.1.1.1.2
Factor 3 out of -3.
f(-π6)=2sin(3(-1)(-π6)-π2)+2
Step 6.1.2.1.1.1.3
Factor 3 out of 6.
f(-π6)=2sin(3(-1-π32)-π2)+2
Step 6.1.2.1.1.1.4
Cancel the common factor.
f(-π6)=2sin(3(-1-π32)-π2)+2
Step 6.1.2.1.1.1.5
Rewrite the expression.
f(-π6)=2sin(-1-π2-π2)+2
f(-π6)=2sin(-1-π2-π2)+2
Step 6.1.2.1.1.2
Move the negative in front of the fraction.
f(-π6)=2sin(-1(-π2)-π2)+2
Step 6.1.2.1.1.3
Multiply -1(-π2).
Tap for more steps...
Step 6.1.2.1.1.3.1
Multiply -1 by -1.
f(-π6)=2sin(1(π2)-π2)+2
Step 6.1.2.1.1.3.2
Multiply π2 by 1.
f(-π6)=2sin(π2-π2)+2
f(-π6)=2sin(π2-π2)+2
f(-π6)=2sin(π2-π2)+2
Step 6.1.2.1.2
Combine the numerators over the common denominator.
f(-π6)=2sin(π-π2)+2
Step 6.1.2.1.3
Subtract π from π.
f(-π6)=2sin(02)+2
Step 6.1.2.1.4
Divide 0 by 2.
f(-π6)=2sin(0)+2
Step 6.1.2.1.5
The exact value of sin(0) is 0.
f(-π6)=20+2
Step 6.1.2.1.6
Multiply 2 by 0.
f(-π6)=0+2
f(-π6)=0+2
Step 6.1.2.2
Add 0 and 2.
f(-π6)=2
Step 6.1.2.3
The final answer is 2.
2
2
2
Step 6.2
Find the point at x=0.
Tap for more steps...
Step 6.2.1
Replace the variable x with 0 in the expression.
f(0)=2sin(-30-π2)+2
Step 6.2.2
Simplify the result.
Tap for more steps...
Step 6.2.2.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.1
Multiply -3 by 0.
f(0)=2sin(0-π2)+2
Step 6.2.2.1.2
Subtract π2 from 0.
f(0)=2sin(-π2)+2
Step 6.2.2.1.3
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(0)=2sin(3π2)+2
Step 6.2.2.1.4
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(0)=2(-sin(π2))+2
Step 6.2.2.1.5
The exact value of sin(π2) is 1.
f(0)=2(-11)+2
Step 6.2.2.1.6
Multiply 2(-11).
Tap for more steps...
Step 6.2.2.1.6.1
Multiply -1 by 1.
f(0)=2-1+2
Step 6.2.2.1.6.2
Multiply 2 by -1.
f(0)=-2+2
f(0)=-2+2
f(0)=-2+2
Step 6.2.2.2
Add -2 and 2.
f(0)=0
Step 6.2.2.3
The final answer is 0.
0
0
0
Step 6.3
Find the point at x=π6.
Tap for more steps...
Step 6.3.1
Replace the variable x with π6 in the expression.
f(π6)=2sin(-3π6-π2)+2
Step 6.3.2
Simplify the result.
Tap for more steps...
Step 6.3.2.1
Simplify each term.
Tap for more steps...
Step 6.3.2.1.1
Simplify each term.
Tap for more steps...
Step 6.3.2.1.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 6.3.2.1.1.1.1
Factor 3 out of -3.
f(π6)=2sin(3(-1)(π6)-π2)+2
Step 6.3.2.1.1.1.2
Factor 3 out of 6.
f(π6)=2sin(3(-1π32)-π2)+2
Step 6.3.2.1.1.1.3
Cancel the common factor.
f(π6)=2sin(3(-1π32)-π2)+2
Step 6.3.2.1.1.1.4
Rewrite the expression.
f(π6)=2sin(-1π2-π2)+2
f(π6)=2sin(-1π2-π2)+2
Step 6.3.2.1.1.2
Rewrite -1π2 as -π2.
f(π6)=2sin(-π2-π2)+2
f(π6)=2sin(-π2-π2)+2
Step 6.3.2.1.2
Combine the numerators over the common denominator.
f(π6)=2sin(-π-π2)+2
Step 6.3.2.1.3
Subtract π from -π.
f(π6)=2sin(-2π2)+2
Step 6.3.2.1.4
Cancel the common factor of -2 and 2.
Tap for more steps...
Step 6.3.2.1.4.1
Factor 2 out of -2π.
f(π6)=2sin(2(-π)2)+2
Step 6.3.2.1.4.2
Cancel the common factors.
Tap for more steps...
Step 6.3.2.1.4.2.1
Factor 2 out of 2.
f(π6)=2sin(2(-π)2(1))+2
Step 6.3.2.1.4.2.2
Cancel the common factor.
f(π6)=2sin(2(-π)21)+2
Step 6.3.2.1.4.2.3
Rewrite the expression.
f(π6)=2sin(-π1)+2
Step 6.3.2.1.4.2.4
Divide -π by 1.
f(π6)=2sin(-π)+2
f(π6)=2sin(-π)+2
f(π6)=2sin(-π)+2
Step 6.3.2.1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π6)=2sin(0)+2
Step 6.3.2.1.6
The exact value of sin(0) is 0.
f(π6)=20+2
Step 6.3.2.1.7
Multiply 2 by 0.
f(π6)=0+2
f(π6)=0+2
Step 6.3.2.2
Add 0 and 2.
f(π6)=2
Step 6.3.2.3
The final answer is 2.
2
2
2
Step 6.4
Find the point at x=π3.
Tap for more steps...
Step 6.4.1
Replace the variable x with π3 in the expression.
f(π3)=2sin(-3π3-π2)+2
Step 6.4.2
Simplify the result.
Tap for more steps...
Step 6.4.2.1
Simplify each term.
Tap for more steps...
Step 6.4.2.1.1
Simplify each term.
Tap for more steps...
Step 6.4.2.1.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 6.4.2.1.1.1.1
Factor 3 out of -3.
f(π3)=2sin(3(-1)(π3)-π2)+2
Step 6.4.2.1.1.1.2
Cancel the common factor.
f(π3)=2sin(3(-1π3)-π2)+2
Step 6.4.2.1.1.1.3
Rewrite the expression.
f(π3)=2sin(-1π-π2)+2
f(π3)=2sin(-1π-π2)+2
Step 6.4.2.1.1.2
Rewrite -1π as -π.
f(π3)=2sin(-π-π2)+2
f(π3)=2sin(-π-π2)+2
Step 6.4.2.1.2
To write -π as a fraction with a common denominator, multiply by 22.
f(π3)=2sin(-π22-π2)+2
Step 6.4.2.1.3
Combine -π and 22.
f(π3)=2sin(-π22-π2)+2
Step 6.4.2.1.4
Combine the numerators over the common denominator.
f(π3)=2sin(-π2-π2)+2
Step 6.4.2.1.5
Simplify the numerator.
Tap for more steps...
Step 6.4.2.1.5.1
Multiply 2 by -1.
f(π3)=2sin(-2π-π2)+2
Step 6.4.2.1.5.2
Subtract π from -2π.
f(π3)=2sin(-3π2)+2
f(π3)=2sin(-3π2)+2
Step 6.4.2.1.6
Move the negative in front of the fraction.
f(π3)=2sin(-(3)π2)+2
Step 6.4.2.1.7
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(π3)=2sin(π2)+2
Step 6.4.2.1.8
The exact value of sin(π2) is 1.
f(π3)=21+2
Step 6.4.2.1.9
Multiply 2 by 1.
f(π3)=2+2
f(π3)=2+2
Step 6.4.2.2
Add 2 and 2.
f(π3)=4
Step 6.4.2.3
The final answer is 4.
4
4
4
Step 6.5
Find the point at x=π2.
Tap for more steps...
Step 6.5.1
Replace the variable x with π2 in the expression.
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2
Simplify the result.
Tap for more steps...
Step 6.5.2.1
Simplify each term.
Tap for more steps...
Step 6.5.2.1.1
Simplify each term.
Tap for more steps...
Step 6.5.2.1.1.1
Combine -3 and π2.
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2.1.1.2
Move the negative in front of the fraction.
f(π2)=2sin(-3π2-π2)+2
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2.1.2
Combine the numerators over the common denominator.
f(π2)=2sin(-3π-π2)+2
Step 6.5.2.1.3
Subtract π from -3π.
f(π2)=2sin(-4π2)+2
Step 6.5.2.1.4
Cancel the common factor of -4 and 2.
Tap for more steps...
Step 6.5.2.1.4.1
Factor 2 out of -4π.
f(π2)=2sin(2(-2π)2)+2
Step 6.5.2.1.4.2
Cancel the common factors.
Tap for more steps...
Step 6.5.2.1.4.2.1
Factor 2 out of 2.
f(π2)=2sin(2(-2π)2(1))+2
Step 6.5.2.1.4.2.2
Cancel the common factor.
f(π2)=2sin(2(-2π)21)+2
Step 6.5.2.1.4.2.3
Rewrite the expression.
f(π2)=2sin(-2π1)+2
Step 6.5.2.1.4.2.4
Divide -2π by 1.
f(π2)=2sin(-2π)+2
f(π2)=2sin(-2π)+2
f(π2)=2sin(-2π)+2
Step 6.5.2.1.5
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(π2)=2sin(0)+2
Step 6.5.2.1.6
The exact value of sin(0) is 0.
f(π2)=20+2
Step 6.5.2.1.7
Multiply 2 by 0.
f(π2)=0+2
f(π2)=0+2
Step 6.5.2.2
Add 0 and 2.
f(π2)=2
Step 6.5.2.3
The final answer is 2.
2
2
2
Step 6.6
List the points in a table.
xf(x)-π6200π62π34π22
xf(x)-π6200π62π34π22
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 2
Period: 2π3
Phase Shift: -π6 (π6 to the left)
Vertical Shift: 2
xf(x)-π6200π62π34π22
Step 8
 [x2  12  π  xdx ]