Enter a problem...
Algebra Examples
y=2sin(-3θ-π2)+2
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=2
b=-3
c=π2
d=2
Step 2
Find the amplitude |a|.
Amplitude: 2
Step 3
Step 3.1
Find the period of 2sin(-3x-π2).
Step 3.1.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.1.2
Replace b with -3 in the formula for period.
2π|-3|
Step 3.1.3
The absolute value is the distance between a number and zero. The distance between -3 and 0 is 3.
2π3
2π3
Step 3.2
Find the period of 2.
Step 3.2.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2.2
Replace b with -3 in the formula for period.
2π|-3|
Step 3.2.3
The absolute value is the distance between a number and zero. The distance between -3 and 0 is 3.
2π3
2π3
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
2π3
2π3
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: π2-3
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: π2⋅1-3
Step 4.4
Move the negative in front of the fraction.
Phase Shift: π2⋅(-13)
Step 4.5
Multiply π2(-13).
Step 4.5.1
Multiply π2 by 13.
Phase Shift: -π2⋅3
Step 4.5.2
Multiply 2 by 3.
Phase Shift: -π6
Phase Shift: -π6
Phase Shift: -π6
Step 5
List the properties of the trigonometric function.
Amplitude: 2
Period: 2π3
Phase Shift: -π6 (π6 to the left)
Vertical Shift: 2
Step 6
Step 6.1
Find the point at x=-π6.
Step 6.1.1
Replace the variable x with -π6 in the expression.
f(-π6)=2sin(-3(-π6)-π2)+2
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Simplify each term.
Step 6.1.2.1.1
Simplify each term.
Step 6.1.2.1.1.1
Cancel the common factor of 3.
Step 6.1.2.1.1.1.1
Move the leading negative in -π6 into the numerator.
f(-π6)=2sin(-3-π6-π2)+2
Step 6.1.2.1.1.1.2
Factor 3 out of -3.
f(-π6)=2sin(3(-1)(-π6)-π2)+2
Step 6.1.2.1.1.1.3
Factor 3 out of 6.
f(-π6)=2sin(3⋅(-1-π3⋅2)-π2)+2
Step 6.1.2.1.1.1.4
Cancel the common factor.
f(-π6)=2sin(3⋅(-1-π3⋅2)-π2)+2
Step 6.1.2.1.1.1.5
Rewrite the expression.
f(-π6)=2sin(-1-π2-π2)+2
f(-π6)=2sin(-1-π2-π2)+2
Step 6.1.2.1.1.2
Move the negative in front of the fraction.
f(-π6)=2sin(-1(-π2)-π2)+2
Step 6.1.2.1.1.3
Multiply -1(-π2).
Step 6.1.2.1.1.3.1
Multiply -1 by -1.
f(-π6)=2sin(1(π2)-π2)+2
Step 6.1.2.1.1.3.2
Multiply π2 by 1.
f(-π6)=2sin(π2-π2)+2
f(-π6)=2sin(π2-π2)+2
f(-π6)=2sin(π2-π2)+2
Step 6.1.2.1.2
Combine the numerators over the common denominator.
f(-π6)=2sin(π-π2)+2
Step 6.1.2.1.3
Subtract π from π.
f(-π6)=2sin(02)+2
Step 6.1.2.1.4
Divide 0 by 2.
f(-π6)=2sin(0)+2
Step 6.1.2.1.5
The exact value of sin(0) is 0.
f(-π6)=2⋅0+2
Step 6.1.2.1.6
Multiply 2 by 0.
f(-π6)=0+2
f(-π6)=0+2
Step 6.1.2.2
Add 0 and 2.
f(-π6)=2
Step 6.1.2.3
The final answer is 2.
2
2
2
Step 6.2
Find the point at x=0.
Step 6.2.1
Replace the variable x with 0 in the expression.
f(0)=2sin(-3⋅0-π2)+2
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Simplify each term.
Step 6.2.2.1.1
Multiply -3 by 0.
f(0)=2sin(0-π2)+2
Step 6.2.2.1.2
Subtract π2 from 0.
f(0)=2sin(-π2)+2
Step 6.2.2.1.3
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(0)=2sin(3π2)+2
Step 6.2.2.1.4
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(0)=2(-sin(π2))+2
Step 6.2.2.1.5
The exact value of sin(π2) is 1.
f(0)=2(-1⋅1)+2
Step 6.2.2.1.6
Multiply 2(-1⋅1).
Step 6.2.2.1.6.1
Multiply -1 by 1.
f(0)=2⋅-1+2
Step 6.2.2.1.6.2
Multiply 2 by -1.
f(0)=-2+2
f(0)=-2+2
f(0)=-2+2
Step 6.2.2.2
Add -2 and 2.
f(0)=0
Step 6.2.2.3
The final answer is 0.
0
0
0
Step 6.3
Find the point at x=π6.
Step 6.3.1
Replace the variable x with π6 in the expression.
f(π6)=2sin(-3π6-π2)+2
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Simplify each term.
Step 6.3.2.1.1
Simplify each term.
Step 6.3.2.1.1.1
Cancel the common factor of 3.
Step 6.3.2.1.1.1.1
Factor 3 out of -3.
f(π6)=2sin(3(-1)(π6)-π2)+2
Step 6.3.2.1.1.1.2
Factor 3 out of 6.
f(π6)=2sin(3⋅(-1π3⋅2)-π2)+2
Step 6.3.2.1.1.1.3
Cancel the common factor.
f(π6)=2sin(3⋅(-1π3⋅2)-π2)+2
Step 6.3.2.1.1.1.4
Rewrite the expression.
f(π6)=2sin(-1π2-π2)+2
f(π6)=2sin(-1π2-π2)+2
Step 6.3.2.1.1.2
Rewrite -1π2 as -π2.
f(π6)=2sin(-π2-π2)+2
f(π6)=2sin(-π2-π2)+2
Step 6.3.2.1.2
Combine the numerators over the common denominator.
f(π6)=2sin(-π-π2)+2
Step 6.3.2.1.3
Subtract π from -π.
f(π6)=2sin(-2π2)+2
Step 6.3.2.1.4
Cancel the common factor of -2 and 2.
Step 6.3.2.1.4.1
Factor 2 out of -2π.
f(π6)=2sin(2(-π)2)+2
Step 6.3.2.1.4.2
Cancel the common factors.
Step 6.3.2.1.4.2.1
Factor 2 out of 2.
f(π6)=2sin(2(-π)2(1))+2
Step 6.3.2.1.4.2.2
Cancel the common factor.
f(π6)=2sin(2(-π)2⋅1)+2
Step 6.3.2.1.4.2.3
Rewrite the expression.
f(π6)=2sin(-π1)+2
Step 6.3.2.1.4.2.4
Divide -π by 1.
f(π6)=2sin(-π)+2
f(π6)=2sin(-π)+2
f(π6)=2sin(-π)+2
Step 6.3.2.1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π6)=2sin(0)+2
Step 6.3.2.1.6
The exact value of sin(0) is 0.
f(π6)=2⋅0+2
Step 6.3.2.1.7
Multiply 2 by 0.
f(π6)=0+2
f(π6)=0+2
Step 6.3.2.2
Add 0 and 2.
f(π6)=2
Step 6.3.2.3
The final answer is 2.
2
2
2
Step 6.4
Find the point at x=π3.
Step 6.4.1
Replace the variable x with π3 in the expression.
f(π3)=2sin(-3π3-π2)+2
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Simplify each term.
Step 6.4.2.1.1
Simplify each term.
Step 6.4.2.1.1.1
Cancel the common factor of 3.
Step 6.4.2.1.1.1.1
Factor 3 out of -3.
f(π3)=2sin(3(-1)(π3)-π2)+2
Step 6.4.2.1.1.1.2
Cancel the common factor.
f(π3)=2sin(3⋅(-1π3)-π2)+2
Step 6.4.2.1.1.1.3
Rewrite the expression.
f(π3)=2sin(-1π-π2)+2
f(π3)=2sin(-1π-π2)+2
Step 6.4.2.1.1.2
Rewrite -1π as -π.
f(π3)=2sin(-π-π2)+2
f(π3)=2sin(-π-π2)+2
Step 6.4.2.1.2
To write -π as a fraction with a common denominator, multiply by 22.
f(π3)=2sin(-π⋅22-π2)+2
Step 6.4.2.1.3
Combine -π and 22.
f(π3)=2sin(-π⋅22-π2)+2
Step 6.4.2.1.4
Combine the numerators over the common denominator.
f(π3)=2sin(-π⋅2-π2)+2
Step 6.4.2.1.5
Simplify the numerator.
Step 6.4.2.1.5.1
Multiply 2 by -1.
f(π3)=2sin(-2π-π2)+2
Step 6.4.2.1.5.2
Subtract π from -2π.
f(π3)=2sin(-3π2)+2
f(π3)=2sin(-3π2)+2
Step 6.4.2.1.6
Move the negative in front of the fraction.
f(π3)=2sin(-(3)π2)+2
Step 6.4.2.1.7
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(π3)=2sin(π2)+2
Step 6.4.2.1.8
The exact value of sin(π2) is 1.
f(π3)=2⋅1+2
Step 6.4.2.1.9
Multiply 2 by 1.
f(π3)=2+2
f(π3)=2+2
Step 6.4.2.2
Add 2 and 2.
f(π3)=4
Step 6.4.2.3
The final answer is 4.
4
4
4
Step 6.5
Find the point at x=π2.
Step 6.5.1
Replace the variable x with π2 in the expression.
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Simplify each term.
Step 6.5.2.1.1
Simplify each term.
Step 6.5.2.1.1.1
Combine -3 and π2.
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2.1.1.2
Move the negative in front of the fraction.
f(π2)=2sin(-3π2-π2)+2
f(π2)=2sin(-3π2-π2)+2
Step 6.5.2.1.2
Combine the numerators over the common denominator.
f(π2)=2sin(-3π-π2)+2
Step 6.5.2.1.3
Subtract π from -3π.
f(π2)=2sin(-4π2)+2
Step 6.5.2.1.4
Cancel the common factor of -4 and 2.
Step 6.5.2.1.4.1
Factor 2 out of -4π.
f(π2)=2sin(2(-2π)2)+2
Step 6.5.2.1.4.2
Cancel the common factors.
Step 6.5.2.1.4.2.1
Factor 2 out of 2.
f(π2)=2sin(2(-2π)2(1))+2
Step 6.5.2.1.4.2.2
Cancel the common factor.
f(π2)=2sin(2(-2π)2⋅1)+2
Step 6.5.2.1.4.2.3
Rewrite the expression.
f(π2)=2sin(-2π1)+2
Step 6.5.2.1.4.2.4
Divide -2π by 1.
f(π2)=2sin(-2π)+2
f(π2)=2sin(-2π)+2
f(π2)=2sin(-2π)+2
Step 6.5.2.1.5
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(π2)=2sin(0)+2
Step 6.5.2.1.6
The exact value of sin(0) is 0.
f(π2)=2⋅0+2
Step 6.5.2.1.7
Multiply 2 by 0.
f(π2)=0+2
f(π2)=0+2
Step 6.5.2.2
Add 0 and 2.
f(π2)=2
Step 6.5.2.3
The final answer is 2.
2
2
2
Step 6.6
List the points in a table.
xf(x)-π6200π62π34π22
xf(x)-π6200π62π34π22
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 2
Period: 2π3
Phase Shift: -π6 (π6 to the left)
Vertical Shift: 2
xf(x)-π6200π62π34π22
Step 8