Algebra Examples

Find the Quadratic Equation Given the Roots -5+2i , -5i
-5+2i , -5i
Step 1
x=-5+2i and x=-5i are the two real distinct solutions for the quadratic equation, which means that x--5+2i and x-(-5i) are the factors of the quadratic equation.
(x+5+2i)(x+5i)=0
Step 2
Expand (x+5+2i)(x+5i) by multiplying each term in the first expression by each term in the second expression.
xx+x(5i)+5x+5(5i)+2ix+2i(5i)=0
Step 3
Simplify each term.
Tap for more steps...
Step 3.1
Multiply x by x.
x2+x(5i)+5x+5(5i)+2ix+2i(5i)=0
Step 3.2
Move 5 to the left of x.
x2+5(xi)+5x+5(5i)+2ix+2i(5i)=0
Step 3.3
Multiply 5 by 5.
x2+5xi+5x+25i+2ix+2i(5i)=0
Step 3.4
Multiply 2i(5i).
Tap for more steps...
Step 3.4.1
Multiply 5 by 2.
x2+5xi+5x+25i+2ix+10ii=0
Step 3.4.2
Raise i to the power of 1.
x2+5xi+5x+25i+2ix+10(ii)=0
Step 3.4.3
Raise i to the power of 1.
x2+5xi+5x+25i+2ix+10(ii)=0
Step 3.4.4
Use the power rule aman=am+n to combine exponents.
x2+5xi+5x+25i+2ix+10i1+1=0
Step 3.4.5
Add 1 and 1.
x2+5xi+5x+25i+2ix+10i2=0
x2+5xi+5x+25i+2ix+10i2=0
Step 3.5
Rewrite i2 as -1.
x2+5xi+5x+25i+2ix+10-1=0
Step 3.6
Multiply 10 by -1.
x2+5xi+5x+25i+2ix-10=0
x2+5xi+5x+25i+2ix-10=0
Step 4
Add 5xi and 2ix.
Tap for more steps...
Step 4.1
Move i.
x2+5xi+2xi+5x+25i-10=0
Step 4.2
Add 5xi and 2xi.
x2+7xi+5x+25i-10=0
x2+7xi+5x+25i-10=0
Step 5
The standard quadratic equation using the given set of solutions {-5+2i,-5i} is y=x2+7xi+5x+25i-10.
y=x2+7xi+5x+25i-10
Step 6
 [x2  12  π  xdx ]