Algebra Examples

Determine if Dependent, Independent, or Inconsistent 3y=9x-6 2y+6x=4
3y=9x-63y=9x6 2y+6x=42y+6x=4
Step 1
Solve the system of equations.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Reorder 2y2y and 6x6x.
6x+2y=46x+2y=4
3y=9x-63y=9x6
6x+2y=46x+2y=4
3y=9x-63y=9x6
Step 1.2
Subtract 9x9x from both sides of the equation.
3y-9x=-6,6x+2y=43y9x=6,6x+2y=4
Step 1.3
Reorder the polynomial.
-9x+3y=-69x+3y=6
6x+2y=46x+2y=4
Step 1.4
Multiply each equation by the value that makes the coefficients of yy opposite.
(-2)(-9x+3y)=(-2)(-6)(2)(9x+3y)=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Simplify the left side.
Tap for more steps...
Step 1.5.1.1
Simplify (-2)(-9x+3y)(2)(9x+3y).
Tap for more steps...
Step 1.5.1.1.1
Apply the distributive property.
-2(-9x)-2(3y)=(-2)(-6)2(9x)2(3y)=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
Step 1.5.1.1.2
Multiply.
Tap for more steps...
Step 1.5.1.1.2.1
Multiply -99 by -22.
18x-2(3y)=(-2)(-6)18x2(3y)=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
Step 1.5.1.1.2.2
Multiply 33 by -22.
18x-6y=(-2)(-6)18x6y=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x6y=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x6y=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x6y=(2)(6)
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
Step 1.5.2
Simplify the right side.
Tap for more steps...
Step 1.5.2.1
Multiply -22 by -66.
18x-6y=1218x6y=12
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
18x-6y=1218x6y=12
(3)(6x+2y)=(3)(4)(3)(6x+2y)=(3)(4)
Step 1.5.3
Simplify the left side.
Tap for more steps...
Step 1.5.3.1
Simplify (3)(6x+2y)(3)(6x+2y).
Tap for more steps...
Step 1.5.3.1.1
Apply the distributive property.
18x-6y=1218x6y=12
3(6x)+3(2y)=(3)(4)3(6x)+3(2y)=(3)(4)
Step 1.5.3.1.2
Multiply.
Tap for more steps...
Step 1.5.3.1.2.1
Multiply 66 by 33.
18x-6y=1218x6y=12
18x+3(2y)=(3)(4)18x+3(2y)=(3)(4)
Step 1.5.3.1.2.2
Multiply 22 by 33.
18x-6y=1218x6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
Step 1.5.4
Simplify the right side.
Tap for more steps...
Step 1.5.4.1
Multiply 33 by 44.
18x-6y=1218x6y=12
18x+6y=1218x+6y=12
18x-6y=1218x6y=12
18x+6y=1218x+6y=12
18x-6y=1218x6y=12
18x+6y=1218x+6y=12
Step 1.6
Add the two equations together to eliminate yy from the system.
1188xx-66yy==1122
++1188xx++66yy==1122
3366xx==2244
Step 1.7
Divide each term in 36x=2436x=24 by 3636 and simplify.
Tap for more steps...
Step 1.7.1
Divide each term in 36x=2436x=24 by 3636.
36x36=243636x36=2436
Step 1.7.2
Simplify the left side.
Tap for more steps...
Step 1.7.2.1
Cancel the common factor of 3636.
Tap for more steps...
Step 1.7.2.1.1
Cancel the common factor.
36x36=2436
Step 1.7.2.1.2
Divide x by 1.
x=2436
x=2436
x=2436
Step 1.7.3
Simplify the right side.
Tap for more steps...
Step 1.7.3.1
Cancel the common factor of 24 and 36.
Tap for more steps...
Step 1.7.3.1.1
Factor 12 out of 24.
x=12(2)36
Step 1.7.3.1.2
Cancel the common factors.
Tap for more steps...
Step 1.7.3.1.2.1
Factor 12 out of 36.
x=122123
Step 1.7.3.1.2.2
Cancel the common factor.
x=122123
Step 1.7.3.1.2.3
Rewrite the expression.
x=23
x=23
x=23
x=23
x=23
Step 1.8
Substitute the value found for x into one of the original equations, then solve for y.
Tap for more steps...
Step 1.8.1
Substitute the value found for x into one of the original equations to solve for y.
18(23)-6y=12
Step 1.8.2
Simplify each term.
Tap for more steps...
Step 1.8.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 1.8.2.1.1
Factor 3 out of 18.
3(6)23-6y=12
Step 1.8.2.1.2
Cancel the common factor.
3623-6y=12
Step 1.8.2.1.3
Rewrite the expression.
62-6y=12
62-6y=12
Step 1.8.2.2
Multiply 6 by 2.
12-6y=12
12-6y=12
Step 1.8.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.8.3.1
Subtract 12 from both sides of the equation.
-6y=12-12
Step 1.8.3.2
Subtract 12 from 12.
-6y=0
-6y=0
Step 1.8.4
Divide each term in -6y=0 by -6 and simplify.
Tap for more steps...
Step 1.8.4.1
Divide each term in -6y=0 by -6.
-6y-6=0-6
Step 1.8.4.2
Simplify the left side.
Tap for more steps...
Step 1.8.4.2.1
Cancel the common factor of -6.
Tap for more steps...
Step 1.8.4.2.1.1
Cancel the common factor.
-6y-6=0-6
Step 1.8.4.2.1.2
Divide y by 1.
y=0-6
y=0-6
y=0-6
Step 1.8.4.3
Simplify the right side.
Tap for more steps...
Step 1.8.4.3.1
Divide 0 by -6.
y=0
y=0
y=0
y=0
Step 1.9
The solution to the independent system of equations can be represented as a point.
(23,0)
(23,0)
Step 2
Since the system has a point of intersection, the system is independent.
Independent
Step 3
 [x2  12  π  xdx ]