Enter a problem...
Algebra Examples
3y=9x-63y=9x−6 2y+6x=42y+6x=4
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Reorder 2y2y and 6x6x.
6x+2y=46x+2y=4
3y=9x-63y=9x−6
6x+2y=46x+2y=4
3y=9x-63y=9x−6
Step 1.2
Subtract 9x9x from both sides of the equation.
3y-9x=-6,6x+2y=43y−9x=−6,6x+2y=4
Step 1.3
Reorder the polynomial.
-9x+3y=-6−9x+3y=−6
6x+2y=46x+2y=4
Step 1.4
Multiply each equation by the value that makes the coefficients of yy opposite.
(-2)⋅(-9x+3y)=(-2)(-6)(−2)⋅(−9x+3y)=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
Step 1.5
Simplify.
Step 1.5.1
Simplify the left side.
Step 1.5.1.1
Simplify (-2)⋅(-9x+3y)(−2)⋅(−9x+3y).
Step 1.5.1.1.1
Apply the distributive property.
-2(-9x)-2(3y)=(-2)(-6)−2(−9x)−2(3y)=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
Step 1.5.1.1.2
Multiply.
Step 1.5.1.1.2.1
Multiply -9−9 by -2−2.
18x-2(3y)=(-2)(-6)18x−2(3y)=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
Step 1.5.1.1.2.2
Multiply 33 by -2−2.
18x-6y=(-2)(-6)18x−6y=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x−6y=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x−6y=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
18x-6y=(-2)(-6)18x−6y=(−2)(−6)
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
Step 1.5.2
Simplify the right side.
Step 1.5.2.1
Multiply -2−2 by -6−6.
18x-6y=1218x−6y=12
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
18x-6y=1218x−6y=12
(3)⋅(6x+2y)=(3)(4)(3)⋅(6x+2y)=(3)(4)
Step 1.5.3
Simplify the left side.
Step 1.5.3.1
Simplify (3)⋅(6x+2y)(3)⋅(6x+2y).
Step 1.5.3.1.1
Apply the distributive property.
18x-6y=1218x−6y=12
3(6x)+3(2y)=(3)(4)3(6x)+3(2y)=(3)(4)
Step 1.5.3.1.2
Multiply.
Step 1.5.3.1.2.1
Multiply 66 by 33.
18x-6y=1218x−6y=12
18x+3(2y)=(3)(4)18x+3(2y)=(3)(4)
Step 1.5.3.1.2.2
Multiply 22 by 33.
18x-6y=1218x−6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x−6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x−6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
18x-6y=1218x−6y=12
18x+6y=(3)(4)18x+6y=(3)(4)
Step 1.5.4
Simplify the right side.
Step 1.5.4.1
Multiply 33 by 44.
18x-6y=1218x−6y=12
18x+6y=1218x+6y=12
18x-6y=1218x−6y=12
18x+6y=1218x+6y=12
18x-6y=1218x−6y=12
18x+6y=1218x+6y=12
Step 1.6
Add the two equations together to eliminate yy from the system.
11 | 88 | xx | -− | 66 | yy | == | 11 | 22 | |||
++ | 11 | 88 | xx | ++ | 66 | yy | == | 11 | 22 | ||
33 | 66 | xx | == | 22 | 44 |
Step 1.7
Divide each term in 36x=2436x=24 by 3636 and simplify.
Step 1.7.1
Divide each term in 36x=2436x=24 by 3636.
36x36=243636x36=2436
Step 1.7.2
Simplify the left side.
Step 1.7.2.1
Cancel the common factor of 3636.
Step 1.7.2.1.1
Cancel the common factor.
36x36=2436
Step 1.7.2.1.2
Divide x by 1.
x=2436
x=2436
x=2436
Step 1.7.3
Simplify the right side.
Step 1.7.3.1
Cancel the common factor of 24 and 36.
Step 1.7.3.1.1
Factor 12 out of 24.
x=12(2)36
Step 1.7.3.1.2
Cancel the common factors.
Step 1.7.3.1.2.1
Factor 12 out of 36.
x=12⋅212⋅3
Step 1.7.3.1.2.2
Cancel the common factor.
x=12⋅212⋅3
Step 1.7.3.1.2.3
Rewrite the expression.
x=23
x=23
x=23
x=23
x=23
Step 1.8
Substitute the value found for x into one of the original equations, then solve for y.
Step 1.8.1
Substitute the value found for x into one of the original equations to solve for y.
18(23)-6y=12
Step 1.8.2
Simplify each term.
Step 1.8.2.1
Cancel the common factor of 3.
Step 1.8.2.1.1
Factor 3 out of 18.
3(6)23-6y=12
Step 1.8.2.1.2
Cancel the common factor.
3⋅623-6y=12
Step 1.8.2.1.3
Rewrite the expression.
6⋅2-6y=12
6⋅2-6y=12
Step 1.8.2.2
Multiply 6 by 2.
12-6y=12
12-6y=12
Step 1.8.3
Move all terms not containing y to the right side of the equation.
Step 1.8.3.1
Subtract 12 from both sides of the equation.
-6y=12-12
Step 1.8.3.2
Subtract 12 from 12.
-6y=0
-6y=0
Step 1.8.4
Divide each term in -6y=0 by -6 and simplify.
Step 1.8.4.1
Divide each term in -6y=0 by -6.
-6y-6=0-6
Step 1.8.4.2
Simplify the left side.
Step 1.8.4.2.1
Cancel the common factor of -6.
Step 1.8.4.2.1.1
Cancel the common factor.
-6y-6=0-6
Step 1.8.4.2.1.2
Divide y by 1.
y=0-6
y=0-6
y=0-6
Step 1.8.4.3
Simplify the right side.
Step 1.8.4.3.1
Divide 0 by -6.
y=0
y=0
y=0
y=0
Step 1.9
The solution to the independent system of equations can be represented as a point.
(23,0)
(23,0)
Step 2
Since the system has a point of intersection, the system is independent.
Independent
Step 3