Enter a problem...
Algebra Examples
Step 1
Find a common factor that is present in each term.
Step 2
Substitute for .
Step 3
Step 3.1
Factor the left side of the equation.
Step 3.1.1
Factor out of .
Step 3.1.1.1
Factor out of .
Step 3.1.1.2
Factor out of .
Step 3.1.1.3
Factor out of .
Step 3.1.2
Rewrite as .
Step 3.1.3
Rewrite as .
Step 3.1.4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 3.1.5
Factor.
Step 3.1.5.1
Simplify.
Step 3.1.5.1.1
Multiply the exponents in .
Step 3.1.5.1.1.1
Apply the power rule and multiply exponents, .
Step 3.1.5.1.1.2
Combine and .
Step 3.1.5.1.2
Move to the left of .
Step 3.1.5.1.3
Raise to the power of .
Step 3.1.5.1.4
Reorder terms.
Step 3.1.5.2
Remove unnecessary parentheses.
Step 3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3
Set equal to .
Step 3.4
Set equal to and solve for .
Step 3.4.1
Set equal to .
Step 3.4.2
Solve for .
Step 3.4.2.1
Add to both sides of the equation.
Step 3.4.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.4.2.3
Simplify the exponent.
Step 3.4.2.3.1
Simplify the left side.
Step 3.4.2.3.1.1
Simplify .
Step 3.4.2.3.1.1.1
Multiply the exponents in .
Step 3.4.2.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.3.1.1.1.2
Cancel the common factor of .
Step 3.4.2.3.1.1.1.2.1
Cancel the common factor.
Step 3.4.2.3.1.1.1.2.2
Rewrite the expression.
Step 3.4.2.3.1.1.2
Simplify.
Step 3.4.2.3.2
Simplify the right side.
Step 3.4.2.3.2.1
Raise to the power of .
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Step 3.5.2.1
Find a common factor that is present in each term.
Step 3.5.2.2
Substitute for .
Step 3.5.2.3
Solve for .
Step 3.5.2.3.1
Multiply by by adding the exponents.
Step 3.5.2.3.1.1
Move .
Step 3.5.2.3.1.2
Multiply by .
Step 3.5.2.3.1.2.1
Raise to the power of .
Step 3.5.2.3.1.2.2
Use the power rule to combine exponents.
Step 3.5.2.3.1.3
Add and .
Step 3.5.2.3.2
Subtract from both sides of the equation.
Step 3.5.2.3.3
Add to both sides of the equation.
Step 3.5.2.3.4
Factor out of .
Step 3.5.2.3.4.1
Factor out of .
Step 3.5.2.3.4.2
Factor out of .
Step 3.5.2.3.4.3
Factor out of .
Step 3.5.2.3.5
Divide each term in by and simplify.
Step 3.5.2.3.5.1
Divide each term in by .
Step 3.5.2.3.5.2
Simplify the left side.
Step 3.5.2.3.5.2.1
Cancel the common factor of .
Step 3.5.2.3.5.2.1.1
Cancel the common factor.
Step 3.5.2.3.5.2.1.2
Divide by .
Step 3.5.2.3.5.3
Simplify the right side.
Step 3.5.2.3.5.3.1
Divide by .
Step 3.5.2.3.6
Subtract from both sides of the equation.
Step 3.5.2.3.7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5.2.3.8
Simplify .
Step 3.5.2.3.8.1
Rewrite as .
Step 3.5.2.3.8.1.1
Rewrite as .
Step 3.5.2.3.8.1.2
Rewrite as .
Step 3.5.2.3.8.2
Pull terms out from under the radical.
Step 3.5.2.3.8.3
Rewrite as .
Step 3.5.2.4
Substitute for .
Step 3.5.2.5
Solve for .
Step 3.5.2.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.5.2.5.2
Simplify the exponent.
Step 3.5.2.5.2.1
Simplify the left side.
Step 3.5.2.5.2.1.1
Simplify .
Step 3.5.2.5.2.1.1.1
Multiply the exponents in .
Step 3.5.2.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.5.2.5.2.1.1.1.2
Cancel the common factor of .
Step 3.5.2.5.2.1.1.1.2.1
Cancel the common factor.
Step 3.5.2.5.2.1.1.1.2.2
Rewrite the expression.
Step 3.5.2.5.2.1.1.2
Simplify.
Step 3.5.2.5.2.2
Simplify the right side.
Step 3.5.2.5.2.2.1
Simplify .
Step 3.5.2.5.2.2.1.1
Apply the product rule to .
Step 3.5.2.5.2.2.1.2
Raise to the power of .
Step 3.5.2.5.2.2.1.3
Rewrite as .
Step 3.5.2.5.2.2.1.4
Raise to the power of .
Step 3.5.2.5.2.2.1.5
Rewrite as .
Step 3.5.2.5.2.2.1.5.1
Factor out of .
Step 3.5.2.5.2.2.1.5.2
Rewrite as .
Step 3.5.2.5.2.2.1.6
Pull terms out from under the radical.
Step 3.5.2.5.2.2.1.7
Multiply by .
Step 3.6
The final solution is all the values that make true.
Step 4
Substitute for .
Step 5
Step 5.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.2
Simplify .
Step 5.2.1
Rewrite as .
Step 5.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 5.2.3
Plus or minus is .
Step 6
Step 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6.2
Simplify .
Step 6.2.1
Rewrite as .
Step 6.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6.3.1
First, use the positive value of the to find the first solution.
Step 6.3.2
Next, use the negative value of the to find the second solution.
Step 6.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7
Step 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.2
Simplify .
Step 7.2.1
Rewrite as .
Step 7.2.1.1
Factor out of .
Step 7.2.1.2
Rewrite as .
Step 7.2.1.3
Add parentheses.
Step 7.2.2
Pull terms out from under the radical.
Step 7.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.3.1
First, use the positive value of the to find the first solution.
Step 7.3.2
Next, use the negative value of the to find the second solution.
Step 7.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 8
List all of the solutions.