Enter a problem...
Algebra Examples
√3x2-x√12+2x√75=√3√3x2−x√12+2x√75=√3
Step 1
Step 1.1
Simplify √3x2-x√12+2x√75√3x2−x√12+2x√75.
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Rewrite 1212 as 22⋅322⋅3.
Step 1.1.1.1.1
Factor 44 out of 1212.
√3x2-x√4(3)+2x√75=√3√3x2−x√4(3)+2x√75=√3
Step 1.1.1.1.2
Rewrite 44 as 2222.
√3x2-x√22⋅3+2x√75=√3√3x2−x√22⋅3+2x√75=√3
√3x2-x√22⋅3+2x√75=√3√3x2−x√22⋅3+2x√75=√3
Step 1.1.1.2
Pull terms out from under the radical.
√3x2-x(2√3)+2x√75=√3√3x2−x(2√3)+2x√75=√3
Step 1.1.1.3
Multiply 22 by -1−1.
√3x2-2x√3+2x√75=√3√3x2−2x√3+2x√75=√3
Step 1.1.1.4
Rewrite 7575 as 52⋅352⋅3.
Step 1.1.1.4.1
Factor 2525 out of 7575.
√3x2-2x√3+2x√25(3)=√3√3x2−2x√3+2x√25(3)=√3
Step 1.1.1.4.2
Rewrite 2525 as 5252.
√3x2-2x√3+2x√52⋅3=√3√3x2−2x√3+2x√52⋅3=√3
√3x2-2x√3+2x√52⋅3=√3√3x2−2x√3+2x√52⋅3=√3
Step 1.1.1.5
Pull terms out from under the radical.
√3x2-2x√3+2x(5√3)=√3√3x2−2x√3+2x(5√3)=√3
Step 1.1.1.6
Multiply 55 by 22.
√3x2-2x√3+10x√3=√3√3x2−2x√3+10x√3=√3
√3x2-2x√3+10x√3=√3√3x2−2x√3+10x√3=√3
Step 1.1.2
Add -2x√3−2x√3 and 10x√310x√3.
√3x2+8x√3=√3√3x2+8x√3=√3
√3x2+8x√3=√3√3x2+8x√3=√3
Step 1.2
Subtract 8x√38x√3 from both sides of the equation.
√3x2=√3-8x√3√3x2=√3−8x√3
√3x2=√3-8x√3√3x2=√3−8x√3
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√3x22=(√3-8x√3)2√3x22=(√3−8x√3)2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √3x2√3x2 as (3x2)12(3x2)12.
((3x2)12)2=(√3-8x√3)2((3x2)12)2=(√3−8x√3)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((3x2)12)2((3x2)12)2.
Step 3.2.1.1
Multiply the exponents in ((3x2)12)2((3x2)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(3x2)12⋅2=(√3-8x√3)2(3x2)12⋅2=(√3−8x√3)2
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(3x2)12⋅2=(√3-8x√3)2
Step 3.2.1.1.2.2
Rewrite the expression.
(3x2)1=(√3-8x√3)2
(3x2)1=(√3-8x√3)2
(3x2)1=(√3-8x√3)2
Step 3.2.1.2
Simplify.
3x2=(√3-8x√3)2
3x2=(√3-8x√3)2
3x2=(√3-8x√3)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (√3-8x√3)2.
Step 3.3.1.1
Rewrite (√3-8x√3)2 as (√3-8x√3)(√3-8x√3).
3x2=(√3-8x√3)(√3-8x√3)
Step 3.3.1.2
Expand (√3-8x√3)(√3-8x√3) using the FOIL Method.
Step 3.3.1.2.1
Apply the distributive property.
3x2=√3(√3-8x√3)-8x√3(√3-8x√3)
Step 3.3.1.2.2
Apply the distributive property.
3x2=√3√3+√3(-8x√3)-8x√3(√3-8x√3)
Step 3.3.1.2.3
Apply the distributive property.
3x2=√3√3+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
3x2=√3√3+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3
Simplify and combine like terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Combine using the product rule for radicals.
3x2=√3⋅3+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.2
Multiply 3 by 3.
3x2=√9+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.3
Rewrite 9 as 32.
3x2=√32+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.4
Pull terms out from under the radical, assuming positive real numbers.
3x2=3+√3(-8x√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.5
Multiply √3(-8x√3).
Step 3.3.1.3.1.5.1
Raise √3 to the power of 1.
3x2=3-8x(√31√3)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.5.2
Raise √3 to the power of 1.
3x2=3-8x(√31√31)-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.5.3
Use the power rule aman=am+n to combine exponents.
3x2=3-8x√31+1-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.5.4
Add 1 and 1.
3x2=3-8x√32-8x√3√3-8x√3(-8x√3)
3x2=3-8x√32-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6
Rewrite √32 as 3.
Step 3.3.1.3.1.6.1
Use n√ax=axn to rewrite √3 as 312.
3x2=3-8x(312)2-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-8x⋅312⋅2-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6.3
Combine 12 and 2.
3x2=3-8x⋅322-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6.4
Cancel the common factor of 2.
Step 3.3.1.3.1.6.4.1
Cancel the common factor.
3x2=3-8x⋅322-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6.4.2
Rewrite the expression.
3x2=3-8x⋅31-8x√3√3-8x√3(-8x√3)
3x2=3-8x⋅31-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.6.5
Evaluate the exponent.
3x2=3-8x⋅3-8x√3√3-8x√3(-8x√3)
3x2=3-8x⋅3-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.7
Multiply 3 by -8.
3x2=3-24x-8x√3√3-8x√3(-8x√3)
Step 3.3.1.3.1.8
Multiply -8x√3√3.
Step 3.3.1.3.1.8.1
Raise √3 to the power of 1.
3x2=3-24x-8x(√31√3)-8x√3(-8x√3)
Step 3.3.1.3.1.8.2
Raise √3 to the power of 1.
3x2=3-24x-8x(√31√31)-8x√3(-8x√3)
Step 3.3.1.3.1.8.3
Use the power rule aman=am+n to combine exponents.
3x2=3-24x-8x√31+1-8x√3(-8x√3)
Step 3.3.1.3.1.8.4
Add 1 and 1.
3x2=3-24x-8x√32-8x√3(-8x√3)
3x2=3-24x-8x√32-8x√3(-8x√3)
Step 3.3.1.3.1.9
Rewrite √32 as 3.
Step 3.3.1.3.1.9.1
Use n√ax=axn to rewrite √3 as 312.
3x2=3-24x-8x(312)2-8x√3(-8x√3)
Step 3.3.1.3.1.9.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-24x-8x⋅312⋅2-8x√3(-8x√3)
Step 3.3.1.3.1.9.3
Combine 12 and 2.
3x2=3-24x-8x⋅322-8x√3(-8x√3)
Step 3.3.1.3.1.9.4
Cancel the common factor of 2.
Step 3.3.1.3.1.9.4.1
Cancel the common factor.
3x2=3-24x-8x⋅322-8x√3(-8x√3)
Step 3.3.1.3.1.9.4.2
Rewrite the expression.
3x2=3-24x-8x⋅31-8x√3(-8x√3)
3x2=3-24x-8x⋅31-8x√3(-8x√3)
Step 3.3.1.3.1.9.5
Evaluate the exponent.
3x2=3-24x-8x⋅3-8x√3(-8x√3)
3x2=3-24x-8x⋅3-8x√3(-8x√3)
Step 3.3.1.3.1.10
Multiply 3 by -8.
3x2=3-24x-24x-8x√3(-8x√3)
Step 3.3.1.3.1.11
Multiply x by x by adding the exponents.
Step 3.3.1.3.1.11.1
Move x.
3x2=3-24x-24x-8(x⋅x)√3(-8√3)
Step 3.3.1.3.1.11.2
Multiply x by x.
3x2=3-24x-24x-8x2√3(-8√3)
3x2=3-24x-24x-8x2√3(-8√3)
Step 3.3.1.3.1.12
Multiply -8x2√3(-8√3).
Step 3.3.1.3.1.12.1
Multiply -8 by -8.
3x2=3-24x-24x+64x2√3√3
Step 3.3.1.3.1.12.2
Raise √3 to the power of 1.
3x2=3-24x-24x+64x2(√31√3)
Step 3.3.1.3.1.12.3
Raise √3 to the power of 1.
3x2=3-24x-24x+64x2(√31√31)
Step 3.3.1.3.1.12.4
Use the power rule aman=am+n to combine exponents.
3x2=3-24x-24x+64x2√31+1
Step 3.3.1.3.1.12.5
Add 1 and 1.
3x2=3-24x-24x+64x2√32
3x2=3-24x-24x+64x2√32
Step 3.3.1.3.1.13
Rewrite √32 as 3.
Step 3.3.1.3.1.13.1
Use n√ax=axn to rewrite √3 as 312.
3x2=3-24x-24x+64x2(312)2
Step 3.3.1.3.1.13.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-24x-24x+64x2⋅312⋅2
Step 3.3.1.3.1.13.3
Combine 12 and 2.
3x2=3-24x-24x+64x2⋅322
Step 3.3.1.3.1.13.4
Cancel the common factor of 2.
Step 3.3.1.3.1.13.4.1
Cancel the common factor.
3x2=3-24x-24x+64x2⋅322
Step 3.3.1.3.1.13.4.2
Rewrite the expression.
3x2=3-24x-24x+64x2⋅31
3x2=3-24x-24x+64x2⋅31
Step 3.3.1.3.1.13.5
Evaluate the exponent.
3x2=3-24x-24x+64x2⋅3
3x2=3-24x-24x+64x2⋅3
Step 3.3.1.3.1.14
Multiply 3 by 64.
3x2=3-24x-24x+192x2
3x2=3-24x-24x+192x2
Step 3.3.1.3.2
Subtract 24x from -24x.
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
Step 4
Step 4.1
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
3-48x+192x2=3x2
Step 4.2
Move all terms containing x to the left side of the equation.
Step 4.2.1
Subtract 3x2 from both sides of the equation.
3-48x+192x2-3x2=0
Step 4.2.2
Subtract 3x2 from 192x2.
3-48x+189x2=0
3-48x+189x2=0
Step 4.3
Factor the left side of the equation.
Step 4.3.1
Factor 3 out of 3-48x+189x2.
Step 4.3.1.1
Factor 3 out of 3.
3(1)-48x+189x2=0
Step 4.3.1.2
Factor 3 out of -48x.
3(1)+3(-16x)+189x2=0
Step 4.3.1.3
Factor 3 out of 189x2.
3(1)+3(-16x)+3(63x2)=0
Step 4.3.1.4
Factor 3 out of 3(1)+3(-16x).
3(1-16x)+3(63x2)=0
Step 4.3.1.5
Factor 3 out of 3(1-16x)+3(63x2).
3(1-16x+63x2)=0
3(1-16x+63x2)=0
Step 4.3.2
Factor.
Step 4.3.2.1
Factor by grouping.
Step 4.3.2.1.1
Reorder terms.
3(63x2-16x+1)=0
Step 4.3.2.1.2
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=63⋅1=63 and whose sum is b=-16.
Step 4.3.2.1.2.1
Factor -16 out of -16x.
3(63x2-16x+1)=0
Step 4.3.2.1.2.2
Rewrite -16 as -7 plus -9
3(63x2+(-7-9)x+1)=0
Step 4.3.2.1.2.3
Apply the distributive property.
3(63x2-7x-9x+1)=0
3(63x2-7x-9x+1)=0
Step 4.3.2.1.3
Factor out the greatest common factor from each group.
Step 4.3.2.1.3.1
Group the first two terms and the last two terms.
3((63x2-7x)-9x+1)=0
Step 4.3.2.1.3.2
Factor out the greatest common factor (GCF) from each group.
3(7x(9x-1)-(9x-1))=0
3(7x(9x-1)-(9x-1))=0
Step 4.3.2.1.4
Factor the polynomial by factoring out the greatest common factor, 9x-1.
3((9x-1)(7x-1))=0
3((9x-1)(7x-1))=0
Step 4.3.2.2
Remove unnecessary parentheses.
3(9x-1)(7x-1)=0
3(9x-1)(7x-1)=0
3(9x-1)(7x-1)=0
Step 4.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
9x-1=0
7x-1=0
Step 4.5
Set 9x-1 equal to 0 and solve for x.
Step 4.5.1
Set 9x-1 equal to 0.
9x-1=0
Step 4.5.2
Solve 9x-1=0 for x.
Step 4.5.2.1
Add 1 to both sides of the equation.
9x=1
Step 4.5.2.2
Divide each term in 9x=1 by 9 and simplify.
Step 4.5.2.2.1
Divide each term in 9x=1 by 9.
9x9=19
Step 4.5.2.2.2
Simplify the left side.
Step 4.5.2.2.2.1
Cancel the common factor of 9.
Step 4.5.2.2.2.1.1
Cancel the common factor.
9x9=19
Step 4.5.2.2.2.1.2
Divide x by 1.
x=19
x=19
x=19
x=19
x=19
x=19
Step 4.6
Set 7x-1 equal to 0 and solve for x.
Step 4.6.1
Set 7x-1 equal to 0.
7x-1=0
Step 4.6.2
Solve 7x-1=0 for x.
Step 4.6.2.1
Add 1 to both sides of the equation.
7x=1
Step 4.6.2.2
Divide each term in 7x=1 by 7 and simplify.
Step 4.6.2.2.1
Divide each term in 7x=1 by 7.
7x7=17
Step 4.6.2.2.2
Simplify the left side.
Step 4.6.2.2.2.1
Cancel the common factor of 7.
Step 4.6.2.2.2.1.1
Cancel the common factor.
7x7=17
Step 4.6.2.2.2.1.2
Divide x by 1.
x=17
x=17
x=17
x=17
x=17
x=17
Step 4.7
The final solution is all the values that make 3(9x-1)(7x-1)=0 true.
x=19,17
x=19,17
Step 5
Exclude the solutions that do not make √3x2-x√12+2x√75=√3 true.
x=19
Step 6
The result can be shown in multiple forms.
Exact Form:
x=19
Decimal Form:
x=0.‾1