Algebra Examples

Solve for x square root of 3x^2-x square root of 12+2x square root of 75 = square root of 3
3x2-x12+2x75=33x2x12+2x75=3
Step 1
Solve for 3x23x2.
Tap for more steps...
Step 1.1
Simplify 3x2-x12+2x753x2x12+2x75.
Tap for more steps...
Step 1.1.1
Simplify each term.
Tap for more steps...
Step 1.1.1.1
Rewrite 1212 as 223223.
Tap for more steps...
Step 1.1.1.1.1
Factor 44 out of 1212.
3x2-x4(3)+2x75=33x2x4(3)+2x75=3
Step 1.1.1.1.2
Rewrite 44 as 2222.
3x2-x223+2x75=33x2x223+2x75=3
3x2-x223+2x75=33x2x223+2x75=3
Step 1.1.1.2
Pull terms out from under the radical.
3x2-x(23)+2x75=33x2x(23)+2x75=3
Step 1.1.1.3
Multiply 22 by -11.
3x2-2x3+2x75=33x22x3+2x75=3
Step 1.1.1.4
Rewrite 7575 as 523523.
Tap for more steps...
Step 1.1.1.4.1
Factor 2525 out of 7575.
3x2-2x3+2x25(3)=33x22x3+2x25(3)=3
Step 1.1.1.4.2
Rewrite 2525 as 5252.
3x2-2x3+2x523=33x22x3+2x523=3
3x2-2x3+2x523=33x22x3+2x523=3
Step 1.1.1.5
Pull terms out from under the radical.
3x2-2x3+2x(53)=33x22x3+2x(53)=3
Step 1.1.1.6
Multiply 55 by 22.
3x2-2x3+10x3=33x22x3+10x3=3
3x2-2x3+10x3=33x22x3+10x3=3
Step 1.1.2
Add -2x32x3 and 10x310x3.
3x2+8x3=33x2+8x3=3
3x2+8x3=33x2+8x3=3
Step 1.2
Subtract 8x38x3 from both sides of the equation.
3x2=3-8x33x2=38x3
3x2=3-8x33x2=38x3
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
3x22=(3-8x3)23x22=(38x3)2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axnnax=axn to rewrite 3x23x2 as (3x2)12(3x2)12.
((3x2)12)2=(3-8x3)2((3x2)12)2=(38x3)2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify ((3x2)12)2((3x2)12)2.
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in ((3x2)12)2((3x2)12)2.
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(3x2)122=(3-8x3)2(3x2)122=(38x3)2
Step 3.2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
(3x2)122=(3-8x3)2
Step 3.2.1.1.2.2
Rewrite the expression.
(3x2)1=(3-8x3)2
(3x2)1=(3-8x3)2
(3x2)1=(3-8x3)2
Step 3.2.1.2
Simplify.
3x2=(3-8x3)2
3x2=(3-8x3)2
3x2=(3-8x3)2
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify (3-8x3)2.
Tap for more steps...
Step 3.3.1.1
Rewrite (3-8x3)2 as (3-8x3)(3-8x3).
3x2=(3-8x3)(3-8x3)
Step 3.3.1.2
Expand (3-8x3)(3-8x3) using the FOIL Method.
Tap for more steps...
Step 3.3.1.2.1
Apply the distributive property.
3x2=3(3-8x3)-8x3(3-8x3)
Step 3.3.1.2.2
Apply the distributive property.
3x2=33+3(-8x3)-8x3(3-8x3)
Step 3.3.1.2.3
Apply the distributive property.
3x2=33+3(-8x3)-8x33-8x3(-8x3)
3x2=33+3(-8x3)-8x33-8x3(-8x3)
Step 3.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.3.1.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.3.1.1
Combine using the product rule for radicals.
3x2=33+3(-8x3)-8x33-8x3(-8x3)
Step 3.3.1.3.1.2
Multiply 3 by 3.
3x2=9+3(-8x3)-8x33-8x3(-8x3)
Step 3.3.1.3.1.3
Rewrite 9 as 32.
3x2=32+3(-8x3)-8x33-8x3(-8x3)
Step 3.3.1.3.1.4
Pull terms out from under the radical, assuming positive real numbers.
3x2=3+3(-8x3)-8x33-8x3(-8x3)
Step 3.3.1.3.1.5
Multiply 3(-8x3).
Tap for more steps...
Step 3.3.1.3.1.5.1
Raise 3 to the power of 1.
3x2=3-8x(313)-8x33-8x3(-8x3)
Step 3.3.1.3.1.5.2
Raise 3 to the power of 1.
3x2=3-8x(3131)-8x33-8x3(-8x3)
Step 3.3.1.3.1.5.3
Use the power rule aman=am+n to combine exponents.
3x2=3-8x31+1-8x33-8x3(-8x3)
Step 3.3.1.3.1.5.4
Add 1 and 1.
3x2=3-8x32-8x33-8x3(-8x3)
3x2=3-8x32-8x33-8x3(-8x3)
Step 3.3.1.3.1.6
Rewrite 32 as 3.
Tap for more steps...
Step 3.3.1.3.1.6.1
Use nax=axn to rewrite 3 as 312.
3x2=3-8x(312)2-8x33-8x3(-8x3)
Step 3.3.1.3.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-8x3122-8x33-8x3(-8x3)
Step 3.3.1.3.1.6.3
Combine 12 and 2.
3x2=3-8x322-8x33-8x3(-8x3)
Step 3.3.1.3.1.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.3.1.6.4.1
Cancel the common factor.
3x2=3-8x322-8x33-8x3(-8x3)
Step 3.3.1.3.1.6.4.2
Rewrite the expression.
3x2=3-8x31-8x33-8x3(-8x3)
3x2=3-8x31-8x33-8x3(-8x3)
Step 3.3.1.3.1.6.5
Evaluate the exponent.
3x2=3-8x3-8x33-8x3(-8x3)
3x2=3-8x3-8x33-8x3(-8x3)
Step 3.3.1.3.1.7
Multiply 3 by -8.
3x2=3-24x-8x33-8x3(-8x3)
Step 3.3.1.3.1.8
Multiply -8x33.
Tap for more steps...
Step 3.3.1.3.1.8.1
Raise 3 to the power of 1.
3x2=3-24x-8x(313)-8x3(-8x3)
Step 3.3.1.3.1.8.2
Raise 3 to the power of 1.
3x2=3-24x-8x(3131)-8x3(-8x3)
Step 3.3.1.3.1.8.3
Use the power rule aman=am+n to combine exponents.
3x2=3-24x-8x31+1-8x3(-8x3)
Step 3.3.1.3.1.8.4
Add 1 and 1.
3x2=3-24x-8x32-8x3(-8x3)
3x2=3-24x-8x32-8x3(-8x3)
Step 3.3.1.3.1.9
Rewrite 32 as 3.
Tap for more steps...
Step 3.3.1.3.1.9.1
Use nax=axn to rewrite 3 as 312.
3x2=3-24x-8x(312)2-8x3(-8x3)
Step 3.3.1.3.1.9.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-24x-8x3122-8x3(-8x3)
Step 3.3.1.3.1.9.3
Combine 12 and 2.
3x2=3-24x-8x322-8x3(-8x3)
Step 3.3.1.3.1.9.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.3.1.9.4.1
Cancel the common factor.
3x2=3-24x-8x322-8x3(-8x3)
Step 3.3.1.3.1.9.4.2
Rewrite the expression.
3x2=3-24x-8x31-8x3(-8x3)
3x2=3-24x-8x31-8x3(-8x3)
Step 3.3.1.3.1.9.5
Evaluate the exponent.
3x2=3-24x-8x3-8x3(-8x3)
3x2=3-24x-8x3-8x3(-8x3)
Step 3.3.1.3.1.10
Multiply 3 by -8.
3x2=3-24x-24x-8x3(-8x3)
Step 3.3.1.3.1.11
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.3.1.3.1.11.1
Move x.
3x2=3-24x-24x-8(xx)3(-83)
Step 3.3.1.3.1.11.2
Multiply x by x.
3x2=3-24x-24x-8x23(-83)
3x2=3-24x-24x-8x23(-83)
Step 3.3.1.3.1.12
Multiply -8x23(-83).
Tap for more steps...
Step 3.3.1.3.1.12.1
Multiply -8 by -8.
3x2=3-24x-24x+64x233
Step 3.3.1.3.1.12.2
Raise 3 to the power of 1.
3x2=3-24x-24x+64x2(313)
Step 3.3.1.3.1.12.3
Raise 3 to the power of 1.
3x2=3-24x-24x+64x2(3131)
Step 3.3.1.3.1.12.4
Use the power rule aman=am+n to combine exponents.
3x2=3-24x-24x+64x231+1
Step 3.3.1.3.1.12.5
Add 1 and 1.
3x2=3-24x-24x+64x232
3x2=3-24x-24x+64x232
Step 3.3.1.3.1.13
Rewrite 32 as 3.
Tap for more steps...
Step 3.3.1.3.1.13.1
Use nax=axn to rewrite 3 as 312.
3x2=3-24x-24x+64x2(312)2
Step 3.3.1.3.1.13.2
Apply the power rule and multiply exponents, (am)n=amn.
3x2=3-24x-24x+64x23122
Step 3.3.1.3.1.13.3
Combine 12 and 2.
3x2=3-24x-24x+64x2322
Step 3.3.1.3.1.13.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.3.1.13.4.1
Cancel the common factor.
3x2=3-24x-24x+64x2322
Step 3.3.1.3.1.13.4.2
Rewrite the expression.
3x2=3-24x-24x+64x231
3x2=3-24x-24x+64x231
Step 3.3.1.3.1.13.5
Evaluate the exponent.
3x2=3-24x-24x+64x23
3x2=3-24x-24x+64x23
Step 3.3.1.3.1.14
Multiply 3 by 64.
3x2=3-24x-24x+192x2
3x2=3-24x-24x+192x2
Step 3.3.1.3.2
Subtract 24x from -24x.
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
3x2=3-48x+192x2
Step 4
Solve for x.
Tap for more steps...
Step 4.1
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
3-48x+192x2=3x2
Step 4.2
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 4.2.1
Subtract 3x2 from both sides of the equation.
3-48x+192x2-3x2=0
Step 4.2.2
Subtract 3x2 from 192x2.
3-48x+189x2=0
3-48x+189x2=0
Step 4.3
Factor the left side of the equation.
Tap for more steps...
Step 4.3.1
Factor 3 out of 3-48x+189x2.
Tap for more steps...
Step 4.3.1.1
Factor 3 out of 3.
3(1)-48x+189x2=0
Step 4.3.1.2
Factor 3 out of -48x.
3(1)+3(-16x)+189x2=0
Step 4.3.1.3
Factor 3 out of 189x2.
3(1)+3(-16x)+3(63x2)=0
Step 4.3.1.4
Factor 3 out of 3(1)+3(-16x).
3(1-16x)+3(63x2)=0
Step 4.3.1.5
Factor 3 out of 3(1-16x)+3(63x2).
3(1-16x+63x2)=0
3(1-16x+63x2)=0
Step 4.3.2
Factor.
Tap for more steps...
Step 4.3.2.1
Factor by grouping.
Tap for more steps...
Step 4.3.2.1.1
Reorder terms.
3(63x2-16x+1)=0
Step 4.3.2.1.2
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=631=63 and whose sum is b=-16.
Tap for more steps...
Step 4.3.2.1.2.1
Factor -16 out of -16x.
3(63x2-16x+1)=0
Step 4.3.2.1.2.2
Rewrite -16 as -7 plus -9
3(63x2+(-7-9)x+1)=0
Step 4.3.2.1.2.3
Apply the distributive property.
3(63x2-7x-9x+1)=0
3(63x2-7x-9x+1)=0
Step 4.3.2.1.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.3.2.1.3.1
Group the first two terms and the last two terms.
3((63x2-7x)-9x+1)=0
Step 4.3.2.1.3.2
Factor out the greatest common factor (GCF) from each group.
3(7x(9x-1)-(9x-1))=0
3(7x(9x-1)-(9x-1))=0
Step 4.3.2.1.4
Factor the polynomial by factoring out the greatest common factor, 9x-1.
3((9x-1)(7x-1))=0
3((9x-1)(7x-1))=0
Step 4.3.2.2
Remove unnecessary parentheses.
3(9x-1)(7x-1)=0
3(9x-1)(7x-1)=0
3(9x-1)(7x-1)=0
Step 4.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
9x-1=0
7x-1=0
Step 4.5
Set 9x-1 equal to 0 and solve for x.
Tap for more steps...
Step 4.5.1
Set 9x-1 equal to 0.
9x-1=0
Step 4.5.2
Solve 9x-1=0 for x.
Tap for more steps...
Step 4.5.2.1
Add 1 to both sides of the equation.
9x=1
Step 4.5.2.2
Divide each term in 9x=1 by 9 and simplify.
Tap for more steps...
Step 4.5.2.2.1
Divide each term in 9x=1 by 9.
9x9=19
Step 4.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.5.2.2.2.1
Cancel the common factor of 9.
Tap for more steps...
Step 4.5.2.2.2.1.1
Cancel the common factor.
9x9=19
Step 4.5.2.2.2.1.2
Divide x by 1.
x=19
x=19
x=19
x=19
x=19
x=19
Step 4.6
Set 7x-1 equal to 0 and solve for x.
Tap for more steps...
Step 4.6.1
Set 7x-1 equal to 0.
7x-1=0
Step 4.6.2
Solve 7x-1=0 for x.
Tap for more steps...
Step 4.6.2.1
Add 1 to both sides of the equation.
7x=1
Step 4.6.2.2
Divide each term in 7x=1 by 7 and simplify.
Tap for more steps...
Step 4.6.2.2.1
Divide each term in 7x=1 by 7.
7x7=17
Step 4.6.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.6.2.2.2.1
Cancel the common factor of 7.
Tap for more steps...
Step 4.6.2.2.2.1.1
Cancel the common factor.
7x7=17
Step 4.6.2.2.2.1.2
Divide x by 1.
x=17
x=17
x=17
x=17
x=17
x=17
Step 4.7
The final solution is all the values that make 3(9x-1)(7x-1)=0 true.
x=19,17
x=19,17
Step 5
Exclude the solutions that do not make 3x2-x12+2x75=3 true.
x=19
Step 6
The result can be shown in multiple forms.
Exact Form:
x=19
Decimal Form:
x=0.1
 [x2  12  π  xdx ]