Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Rewrite as .
Step 1.1.1.1.1
Factor out of .
Step 1.1.1.1.2
Rewrite as .
Step 1.1.1.2
Pull terms out from under the radical.
Step 1.1.1.3
Multiply by .
Step 1.1.1.4
Rewrite as .
Step 1.1.1.4.1
Factor out of .
Step 1.1.1.4.2
Rewrite as .
Step 1.1.1.5
Pull terms out from under the radical.
Step 1.1.1.6
Multiply by .
Step 1.1.2
Add and .
Step 1.2
Subtract from both sides of the equation.
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Rewrite as .
Step 3.3.1.2
Expand using the FOIL Method.
Step 3.3.1.2.1
Apply the distributive property.
Step 3.3.1.2.2
Apply the distributive property.
Step 3.3.1.2.3
Apply the distributive property.
Step 3.3.1.3
Simplify and combine like terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Combine using the product rule for radicals.
Step 3.3.1.3.1.2
Multiply by .
Step 3.3.1.3.1.3
Rewrite as .
Step 3.3.1.3.1.4
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3.1.3.1.5
Multiply .
Step 3.3.1.3.1.5.1
Raise to the power of .
Step 3.3.1.3.1.5.2
Raise to the power of .
Step 3.3.1.3.1.5.3
Use the power rule to combine exponents.
Step 3.3.1.3.1.5.4
Add and .
Step 3.3.1.3.1.6
Rewrite as .
Step 3.3.1.3.1.6.1
Use to rewrite as .
Step 3.3.1.3.1.6.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.6.3
Combine and .
Step 3.3.1.3.1.6.4
Cancel the common factor of .
Step 3.3.1.3.1.6.4.1
Cancel the common factor.
Step 3.3.1.3.1.6.4.2
Rewrite the expression.
Step 3.3.1.3.1.6.5
Evaluate the exponent.
Step 3.3.1.3.1.7
Multiply by .
Step 3.3.1.3.1.8
Multiply .
Step 3.3.1.3.1.8.1
Raise to the power of .
Step 3.3.1.3.1.8.2
Raise to the power of .
Step 3.3.1.3.1.8.3
Use the power rule to combine exponents.
Step 3.3.1.3.1.8.4
Add and .
Step 3.3.1.3.1.9
Rewrite as .
Step 3.3.1.3.1.9.1
Use to rewrite as .
Step 3.3.1.3.1.9.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.9.3
Combine and .
Step 3.3.1.3.1.9.4
Cancel the common factor of .
Step 3.3.1.3.1.9.4.1
Cancel the common factor.
Step 3.3.1.3.1.9.4.2
Rewrite the expression.
Step 3.3.1.3.1.9.5
Evaluate the exponent.
Step 3.3.1.3.1.10
Multiply by .
Step 3.3.1.3.1.11
Multiply by by adding the exponents.
Step 3.3.1.3.1.11.1
Move .
Step 3.3.1.3.1.11.2
Multiply by .
Step 3.3.1.3.1.12
Multiply .
Step 3.3.1.3.1.12.1
Multiply by .
Step 3.3.1.3.1.12.2
Raise to the power of .
Step 3.3.1.3.1.12.3
Raise to the power of .
Step 3.3.1.3.1.12.4
Use the power rule to combine exponents.
Step 3.3.1.3.1.12.5
Add and .
Step 3.3.1.3.1.13
Rewrite as .
Step 3.3.1.3.1.13.1
Use to rewrite as .
Step 3.3.1.3.1.13.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.13.3
Combine and .
Step 3.3.1.3.1.13.4
Cancel the common factor of .
Step 3.3.1.3.1.13.4.1
Cancel the common factor.
Step 3.3.1.3.1.13.4.2
Rewrite the expression.
Step 3.3.1.3.1.13.5
Evaluate the exponent.
Step 3.3.1.3.1.14
Multiply by .
Step 3.3.1.3.2
Subtract from .
Step 4
Step 4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.2
Move all terms containing to the left side of the equation.
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Subtract from .
Step 4.3
Factor the left side of the equation.
Step 4.3.1
Factor out of .
Step 4.3.1.1
Factor out of .
Step 4.3.1.2
Factor out of .
Step 4.3.1.3
Factor out of .
Step 4.3.1.4
Factor out of .
Step 4.3.1.5
Factor out of .
Step 4.3.2
Factor.
Step 4.3.2.1
Factor by grouping.
Step 4.3.2.1.1
Reorder terms.
Step 4.3.2.1.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.3.2.1.2.1
Factor out of .
Step 4.3.2.1.2.2
Rewrite as plus
Step 4.3.2.1.2.3
Apply the distributive property.
Step 4.3.2.1.3
Factor out the greatest common factor from each group.
Step 4.3.2.1.3.1
Group the first two terms and the last two terms.
Step 4.3.2.1.3.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.2.1.4
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.2.2
Remove unnecessary parentheses.
Step 4.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Solve for .
Step 4.5.2.1
Add to both sides of the equation.
Step 4.5.2.2
Divide each term in by and simplify.
Step 4.5.2.2.1
Divide each term in by .
Step 4.5.2.2.2
Simplify the left side.
Step 4.5.2.2.2.1
Cancel the common factor of .
Step 4.5.2.2.2.1.1
Cancel the common factor.
Step 4.5.2.2.2.1.2
Divide by .
Step 4.6
Set equal to and solve for .
Step 4.6.1
Set equal to .
Step 4.6.2
Solve for .
Step 4.6.2.1
Add to both sides of the equation.
Step 4.6.2.2
Divide each term in by and simplify.
Step 4.6.2.2.1
Divide each term in by .
Step 4.6.2.2.2
Simplify the left side.
Step 4.6.2.2.2.1
Cancel the common factor of .
Step 4.6.2.2.2.1.1
Cancel the common factor.
Step 4.6.2.2.2.1.2
Divide by .
Step 4.7
The final solution is all the values that make true.
Step 5
Exclude the solutions that do not make true.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: