Enter a problem...
Algebra Examples
Step 1
Use the form to find the variables used to find the amplitude, period, phase shift, and vertical shift.
Step 2
Find the amplitude .
Amplitude:
Step 3
Step 3.1
Find the period of .
Step 3.1.1
The period of the function can be calculated using .
Step 3.1.2
Replace with in the formula for period.
Step 3.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.1.4
Divide by .
Step 3.2
Find the period of .
Step 3.2.1
The period of the function can be calculated using .
Step 3.2.2
Replace with in the formula for period.
Step 3.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.2.4
Divide by .
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
Step 4
Step 4.1
The phase shift of the function can be calculated from .
Phase Shift:
Step 4.2
Replace the values of and in the equation for phase shift.
Phase Shift:
Step 4.3
Divide by .
Phase Shift:
Phase Shift:
Step 5
List the properties of the trigonometric function.
Amplitude:
Period:
Phase Shift: ( to the right)
Vertical Shift:
Step 6
Step 6.1
Find the point at .
Step 6.1.1
Replace the variable with in the expression.
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Subtract from .
Step 6.1.2.2
Simplify each term.
Step 6.1.2.2.1
The exact value of is .
Step 6.1.2.2.2
Divide by .
Step 6.1.2.3
Add and .
Step 6.1.2.4
The final answer is .
Step 6.2
Find the point at .
Step 6.2.1
Replace the variable with in the expression.
Step 6.2.2
Simplify the result.
Step 6.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 6.2.2.2
Combine fractions.
Step 6.2.2.2.1
Combine and .
Step 6.2.2.2.2
Combine the numerators over the common denominator.
Step 6.2.2.3
Simplify each term.
Step 6.2.2.3.1
Simplify the numerator.
Step 6.2.2.3.1.1
Multiply by .
Step 6.2.2.3.1.2
Subtract from .
Step 6.2.2.3.2
The exact value of is .
Step 6.2.2.4
Simplify the expression.
Step 6.2.2.4.1
Write as a fraction with a common denominator.
Step 6.2.2.4.2
Combine the numerators over the common denominator.
Step 6.2.2.4.3
Add and .
Step 6.2.2.5
The final answer is .
Step 6.3
Find the point at .
Step 6.3.1
Replace the variable with in the expression.
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Subtract from .
Step 6.3.2.2
Simplify each term.
Step 6.3.2.2.1
Simplify the numerator.
Step 6.3.2.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 6.3.2.2.1.2
The exact value of is .
Step 6.3.2.2.2
Divide by .
Step 6.3.2.3
Add and .
Step 6.3.2.4
The final answer is .
Step 6.4
Find the point at .
Step 6.4.1
Replace the variable with in the expression.
Step 6.4.2
Simplify the result.
Step 6.4.2.1
To write as a fraction with a common denominator, multiply by .
Step 6.4.2.2
Combine fractions.
Step 6.4.2.2.1
Combine and .
Step 6.4.2.2.2
Combine the numerators over the common denominator.
Step 6.4.2.3
Simplify each term.
Step 6.4.2.3.1
Simplify the numerator.
Step 6.4.2.3.1.1
Multiply by .
Step 6.4.2.3.1.2
Subtract from .
Step 6.4.2.3.2
Simplify the numerator.
Step 6.4.2.3.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
Step 6.4.2.3.2.2
The exact value of is .
Step 6.4.2.3.2.3
Multiply by .
Step 6.4.2.3.3
Move the negative in front of the fraction.
Step 6.4.2.4
Simplify the expression.
Step 6.4.2.4.1
Write as a fraction with a common denominator.
Step 6.4.2.4.2
Combine the numerators over the common denominator.
Step 6.4.2.4.3
Add and .
Step 6.4.2.5
The final answer is .
Step 6.5
Find the point at .
Step 6.5.1
Replace the variable with in the expression.
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Subtract from .
Step 6.5.2.2
Simplify each term.
Step 6.5.2.2.1
Simplify the numerator.
Step 6.5.2.2.1.1
Subtract full rotations of until the angle is greater than or equal to and less than .
Step 6.5.2.2.1.2
The exact value of is .
Step 6.5.2.2.2
Divide by .
Step 6.5.2.3
Add and .
Step 6.5.2.4
The final answer is .
Step 6.6
List the points in a table.
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude:
Period:
Phase Shift: ( to the right)
Vertical Shift:
Step 8