Algebra Examples

Find the Inverse f(x)=9( fifth root of x-8)+10
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Solve for .
Tap for more steps...
Step 3.2.1
Simplify .
Tap for more steps...
Step 3.2.1.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1.1
Apply the distributive property.
Step 3.2.1.1.2
Multiply by .
Step 3.2.1.2
Add and .
Step 3.2.2
Add to both sides of the equation.
Step 3.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.3.1
Divide each term in by .
Step 3.2.3.2
Simplify the left side.
Tap for more steps...
Step 3.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.3.2.1.1
Cancel the common factor.
Step 3.2.3.2.1.2
Divide by .
Step 3.3
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 3.4
Simplify each side of the equation.
Tap for more steps...
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.1
Simplify .
Tap for more steps...
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Tap for more steps...
Step 3.4.3.1.2.1
Apply the product rule to .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Apply the product rule to .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.4.3.1.2.5
Combine and .
Step 3.4.3.1.2.6
Combine.
Step 3.4.3.1.2.7
Multiply by .
Step 3.4.3.1.2.8
Multiply by .
Step 3.4.3.1.2.9
Apply the product rule to .
Step 3.4.3.1.2.10
Raise to the power of .
Step 3.4.3.1.2.11
Combine and .
Step 3.4.3.1.2.12
Apply the product rule to .
Step 3.4.3.1.2.13
Combine.
Step 3.4.3.1.2.14
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.2.14.1
Raise to the power of .
Step 3.4.3.1.2.14.2
Multiply by .
Step 3.4.3.1.2.15
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.2.15.1
Rewrite as .
Step 3.4.3.1.2.15.2
Rewrite as .
Step 3.4.3.1.2.15.3
Multiply the exponents in .
Tap for more steps...
Step 3.4.3.1.2.15.3.1
Apply the power rule and multiply exponents, .
Step 3.4.3.1.2.15.3.2
Multiply by .
Step 3.4.3.1.2.15.4
Use the power rule to combine exponents.
Step 3.4.3.1.2.15.5
Add and .
Step 3.4.3.1.2.16
Raise to the power of .
Step 3.4.3.1.2.17
Apply the product rule to .
Step 3.4.3.1.2.18
Raise to the power of .
Step 3.4.3.1.2.19
Combine and .
Step 3.4.3.1.2.20
Apply the product rule to .
Step 3.4.3.1.2.21
Combine.
Step 3.4.3.1.2.22
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.2.22.1
Raise to the power of .
Step 3.4.3.1.2.22.2
Multiply by .
Step 3.4.3.1.2.23
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.2.23.1
Rewrite as .
Step 3.4.3.1.2.23.2
Rewrite as .
Step 3.4.3.1.2.23.3
Multiply the exponents in .
Tap for more steps...
Step 3.4.3.1.2.23.3.1
Apply the power rule and multiply exponents, .
Step 3.4.3.1.2.23.3.2
Multiply by .
Step 3.4.3.1.2.23.4
Use the power rule to combine exponents.
Step 3.4.3.1.2.23.5
Add and .
Step 3.4.3.1.2.24
Raise to the power of .
Step 3.4.3.1.2.25
Combine and .
Step 3.4.3.1.2.26
Apply the product rule to .
Step 3.4.3.1.2.27
Combine.
Step 3.4.3.1.2.28
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.1.2.28.1
Multiply by .
Tap for more steps...
Step 3.4.3.1.2.28.1.1
Raise to the power of .
Step 3.4.3.1.2.28.1.2
Use the power rule to combine exponents.
Step 3.4.3.1.2.28.2
Add and .
Step 3.4.3.1.2.29
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.2.29.1
Raise to the power of .
Step 3.4.3.1.2.29.2
Multiply by .
Step 3.4.3.1.2.30
Raise to the power of .
Step 3.4.3.1.2.31
Apply the product rule to .
Step 3.4.3.1.2.32
Raise to the power of .
Step 3.4.3.1.2.33
Raise to the power of .
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Simplify each term.
Tap for more steps...
Step 5.2.4.1
Simplify each term.
Tap for more steps...
Step 5.2.4.1.1
Apply the distributive property.
Step 5.2.4.1.2
Multiply by .
Step 5.2.4.2
Add and .
Step 5.2.4.3
Use the Binomial Theorem.
Step 5.2.4.4
Simplify each term.
Tap for more steps...
Step 5.2.4.4.1
Apply the product rule to .
Step 5.2.4.4.2
Raise to the power of .
Step 5.2.4.4.3
Rewrite as .
Tap for more steps...
Step 5.2.4.4.3.1
Use to rewrite as .
Step 5.2.4.4.3.2
Apply the power rule and multiply exponents, .
Step 5.2.4.4.3.3
Combine and .
Step 5.2.4.4.3.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.4.4.3.4.1
Cancel the common factor.
Step 5.2.4.4.3.4.2
Rewrite the expression.
Step 5.2.4.4.3.5
Simplify.
Step 5.2.4.4.4
Apply the product rule to .
Step 5.2.4.4.5
Raise to the power of .
Step 5.2.4.4.6
Rewrite as .
Step 5.2.4.4.7
Multiply by .
Step 5.2.4.4.8
Multiply by .
Step 5.2.4.4.9
Apply the product rule to .
Step 5.2.4.4.10
Raise to the power of .
Step 5.2.4.4.11
Rewrite as .
Step 5.2.4.4.12
Multiply by .
Step 5.2.4.4.13
Raise to the power of .
Step 5.2.4.4.14
Multiply by .
Step 5.2.4.4.15
Apply the product rule to .
Step 5.2.4.4.16
Raise to the power of .
Step 5.2.4.4.17
Rewrite as .
Step 5.2.4.4.18
Multiply by .
Step 5.2.4.4.19
Raise to the power of .
Step 5.2.4.4.20
Multiply by .
Step 5.2.4.4.21
Multiply by .
Step 5.2.4.4.22
Raise to the power of .
Step 5.2.4.4.23
Multiply by .
Step 5.2.4.4.24
Raise to the power of .
Step 5.2.4.5
Simplify each term.
Tap for more steps...
Step 5.2.4.5.1
Apply the distributive property.
Step 5.2.4.5.2
Multiply by .
Step 5.2.4.6
Add and .
Step 5.2.4.7
Use the Binomial Theorem.
Step 5.2.4.8
Simplify each term.
Tap for more steps...
Step 5.2.4.8.1
Apply the product rule to .
Step 5.2.4.8.2
Raise to the power of .
Step 5.2.4.8.3
Rewrite as .
Step 5.2.4.8.4
Apply the product rule to .
Step 5.2.4.8.5
Raise to the power of .
Step 5.2.4.8.6
Rewrite as .
Step 5.2.4.8.7
Multiply by .
Step 5.2.4.8.8
Multiply by .
Step 5.2.4.8.9
Apply the product rule to .
Step 5.2.4.8.10
Raise to the power of .
Step 5.2.4.8.11
Rewrite as .
Step 5.2.4.8.12
Multiply by .
Step 5.2.4.8.13
Raise to the power of .
Step 5.2.4.8.14
Multiply by .
Step 5.2.4.8.15
Multiply by .
Step 5.2.4.8.16
Raise to the power of .
Step 5.2.4.8.17
Multiply by .
Step 5.2.4.8.18
Raise to the power of .
Step 5.2.4.9
Apply the distributive property.
Step 5.2.4.10
Simplify.
Tap for more steps...
Step 5.2.4.10.1
Multiply by .
Step 5.2.4.10.2
Multiply by .
Step 5.2.4.10.3
Multiply by .
Step 5.2.4.10.4
Multiply by .
Step 5.2.4.10.5
Multiply by .
Step 5.2.4.11
Simplify each term.
Tap for more steps...
Step 5.2.4.11.1
Apply the distributive property.
Step 5.2.4.11.2
Multiply by .
Step 5.2.4.12
Add and .
Step 5.2.4.13
Use the Binomial Theorem.
Step 5.2.4.14
Simplify each term.
Tap for more steps...
Step 5.2.4.14.1
Apply the product rule to .
Step 5.2.4.14.2
Raise to the power of .
Step 5.2.4.14.3
Rewrite as .
Step 5.2.4.14.4
Apply the product rule to .
Step 5.2.4.14.5
Raise to the power of .
Step 5.2.4.14.6
Rewrite as .
Step 5.2.4.14.7
Multiply by .
Step 5.2.4.14.8
Multiply by .
Step 5.2.4.14.9
Multiply by .
Step 5.2.4.14.10
Raise to the power of .
Step 5.2.4.14.11
Multiply by .
Step 5.2.4.14.12
Raise to the power of .
Step 5.2.4.15
Apply the distributive property.
Step 5.2.4.16
Simplify.
Tap for more steps...
Step 5.2.4.16.1
Multiply by .
Step 5.2.4.16.2
Multiply by .
Step 5.2.4.16.3
Multiply by .
Step 5.2.4.16.4
Multiply by .
Step 5.2.4.17
Simplify each term.
Tap for more steps...
Step 5.2.4.17.1
Apply the distributive property.
Step 5.2.4.17.2
Multiply by .
Step 5.2.4.18
Add and .
Step 5.2.4.19
Rewrite as .
Step 5.2.4.20
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.4.20.1
Apply the distributive property.
Step 5.2.4.20.2
Apply the distributive property.
Step 5.2.4.20.3
Apply the distributive property.
Step 5.2.4.21
Simplify and combine like terms.
Tap for more steps...
Step 5.2.4.21.1
Simplify each term.
Tap for more steps...
Step 5.2.4.21.1.1
Multiply .
Tap for more steps...
Step 5.2.4.21.1.1.1
Multiply by .
Step 5.2.4.21.1.1.2
Raise to the power of .
Step 5.2.4.21.1.1.3
Raise to the power of .
Step 5.2.4.21.1.1.4
Use the power rule to combine exponents.
Step 5.2.4.21.1.1.5
Add and .
Step 5.2.4.21.1.2
Rewrite as .
Step 5.2.4.21.1.3
Multiply by .
Step 5.2.4.21.1.4
Multiply by .
Step 5.2.4.21.1.5
Multiply by .
Step 5.2.4.21.2
Subtract from .
Step 5.2.4.22
Apply the distributive property.
Step 5.2.4.23
Simplify.
Tap for more steps...
Step 5.2.4.23.1
Multiply by .
Step 5.2.4.23.2
Multiply by .
Step 5.2.4.23.3
Multiply by .
Step 5.2.4.24
Simplify each term.
Tap for more steps...
Step 5.2.4.24.1
Apply the distributive property.
Step 5.2.4.24.2
Multiply by .
Step 5.2.4.25
Add and .
Step 5.2.4.26
Apply the distributive property.
Step 5.2.4.27
Multiply by .
Step 5.2.4.28
Multiply by .
Step 5.2.5
Simplify terms.
Tap for more steps...
Step 5.2.5.1
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.1.1
Add and .
Step 5.2.5.1.2
Add and .
Step 5.2.5.1.3
Subtract from .
Step 5.2.5.1.4
Add and .
Step 5.2.5.1.5
Add and .
Step 5.2.5.1.6
Add and .
Step 5.2.5.1.7
Add and .
Step 5.2.5.1.8
Add and .
Step 5.2.5.1.9
Subtract from .
Step 5.2.5.1.10
Add and .
Step 5.2.5.1.11
Add and .
Step 5.2.5.1.12
Add and .
Step 5.2.5.2
Subtract from .
Step 5.2.5.3
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.3.1
Add and .
Step 5.2.5.3.2
Add and .
Step 5.2.5.4
Subtract from .
Step 5.2.5.5
Add and .
Step 5.2.5.6
Subtract from .
Step 5.2.5.7
Combine the opposite terms in .
Tap for more steps...
Step 5.2.5.7.1
Add and .
Step 5.2.5.7.2
Add and .
Step 5.2.5.8
Cancel the common factor of .
Tap for more steps...
Step 5.2.5.8.1
Cancel the common factor.
Step 5.2.5.8.2
Divide by .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Remove parentheses.
Step 5.3.4
Simplify each term.
Tap for more steps...
Step 5.3.4.1
Simplify each term.
Tap for more steps...
Step 5.3.4.1.1
Combine the numerators over the common denominator.
Step 5.3.4.1.2
Simplify the numerator.
Tap for more steps...
Step 5.3.4.1.2.1
Make each term match the terms from the binomial theorem formula.
Step 5.3.4.1.2.2
Factor using the binomial theorem.
Step 5.3.4.1.3
Rewrite as .
Step 5.3.4.1.4
Rewrite as .
Step 5.3.4.1.5
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4.2
To write as a fraction with a common denominator, multiply by .
Step 5.3.4.3
Combine and .
Step 5.3.4.4
Combine the numerators over the common denominator.
Step 5.3.4.5
Simplify the numerator.
Tap for more steps...
Step 5.3.4.5.1
Multiply by .
Step 5.3.4.5.2
Subtract from .
Step 5.3.4.6
Cancel the common factor of .
Tap for more steps...
Step 5.3.4.6.1
Cancel the common factor.
Step 5.3.4.6.2
Rewrite the expression.
Step 5.3.5
Combine the opposite terms in .
Tap for more steps...
Step 5.3.5.1
Add and .
Step 5.3.5.2
Add and .
Step 5.4
Since and , then is the inverse of .