Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Solve for .
Step 3.2.1
Simplify .
Step 3.2.1.1
Simplify each term.
Step 3.2.1.1.1
Apply the distributive property.
Step 3.2.1.1.2
Multiply by .
Step 3.2.1.2
Add and .
Step 3.2.2
Add to both sides of the equation.
Step 3.2.3
Divide each term in by and simplify.
Step 3.2.3.1
Divide each term in by .
Step 3.2.3.2
Simplify the left side.
Step 3.2.3.2.1
Cancel the common factor of .
Step 3.2.3.2.1.1
Cancel the common factor.
Step 3.2.3.2.1.2
Divide by .
Step 3.3
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Multiply the exponents in .
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Apply the product rule to .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Apply the product rule to .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.4.3.1.2.5
Combine and .
Step 3.4.3.1.2.6
Combine.
Step 3.4.3.1.2.7
Multiply by .
Step 3.4.3.1.2.8
Multiply by .
Step 3.4.3.1.2.9
Apply the product rule to .
Step 3.4.3.1.2.10
Raise to the power of .
Step 3.4.3.1.2.11
Combine and .
Step 3.4.3.1.2.12
Apply the product rule to .
Step 3.4.3.1.2.13
Combine.
Step 3.4.3.1.2.14
Simplify the numerator.
Step 3.4.3.1.2.14.1
Raise to the power of .
Step 3.4.3.1.2.14.2
Multiply by .
Step 3.4.3.1.2.15
Simplify the denominator.
Step 3.4.3.1.2.15.1
Rewrite as .
Step 3.4.3.1.2.15.2
Rewrite as .
Step 3.4.3.1.2.15.3
Multiply the exponents in .
Step 3.4.3.1.2.15.3.1
Apply the power rule and multiply exponents, .
Step 3.4.3.1.2.15.3.2
Multiply by .
Step 3.4.3.1.2.15.4
Use the power rule to combine exponents.
Step 3.4.3.1.2.15.5
Add and .
Step 3.4.3.1.2.16
Raise to the power of .
Step 3.4.3.1.2.17
Apply the product rule to .
Step 3.4.3.1.2.18
Raise to the power of .
Step 3.4.3.1.2.19
Combine and .
Step 3.4.3.1.2.20
Apply the product rule to .
Step 3.4.3.1.2.21
Combine.
Step 3.4.3.1.2.22
Simplify the numerator.
Step 3.4.3.1.2.22.1
Raise to the power of .
Step 3.4.3.1.2.22.2
Multiply by .
Step 3.4.3.1.2.23
Simplify the denominator.
Step 3.4.3.1.2.23.1
Rewrite as .
Step 3.4.3.1.2.23.2
Rewrite as .
Step 3.4.3.1.2.23.3
Multiply the exponents in .
Step 3.4.3.1.2.23.3.1
Apply the power rule and multiply exponents, .
Step 3.4.3.1.2.23.3.2
Multiply by .
Step 3.4.3.1.2.23.4
Use the power rule to combine exponents.
Step 3.4.3.1.2.23.5
Add and .
Step 3.4.3.1.2.24
Raise to the power of .
Step 3.4.3.1.2.25
Combine and .
Step 3.4.3.1.2.26
Apply the product rule to .
Step 3.4.3.1.2.27
Combine.
Step 3.4.3.1.2.28
Multiply by by adding the exponents.
Step 3.4.3.1.2.28.1
Multiply by .
Step 3.4.3.1.2.28.1.1
Raise to the power of .
Step 3.4.3.1.2.28.1.2
Use the power rule to combine exponents.
Step 3.4.3.1.2.28.2
Add and .
Step 3.4.3.1.2.29
Simplify the numerator.
Step 3.4.3.1.2.29.1
Raise to the power of .
Step 3.4.3.1.2.29.2
Multiply by .
Step 3.4.3.1.2.30
Raise to the power of .
Step 3.4.3.1.2.31
Apply the product rule to .
Step 3.4.3.1.2.32
Raise to the power of .
Step 3.4.3.1.2.33
Raise to the power of .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Simplify each term.
Step 5.2.4.1
Simplify each term.
Step 5.2.4.1.1
Apply the distributive property.
Step 5.2.4.1.2
Multiply by .
Step 5.2.4.2
Add and .
Step 5.2.4.3
Use the Binomial Theorem.
Step 5.2.4.4
Simplify each term.
Step 5.2.4.4.1
Apply the product rule to .
Step 5.2.4.4.2
Raise to the power of .
Step 5.2.4.4.3
Rewrite as .
Step 5.2.4.4.3.1
Use to rewrite as .
Step 5.2.4.4.3.2
Apply the power rule and multiply exponents, .
Step 5.2.4.4.3.3
Combine and .
Step 5.2.4.4.3.4
Cancel the common factor of .
Step 5.2.4.4.3.4.1
Cancel the common factor.
Step 5.2.4.4.3.4.2
Rewrite the expression.
Step 5.2.4.4.3.5
Simplify.
Step 5.2.4.4.4
Apply the product rule to .
Step 5.2.4.4.5
Raise to the power of .
Step 5.2.4.4.6
Rewrite as .
Step 5.2.4.4.7
Multiply by .
Step 5.2.4.4.8
Multiply by .
Step 5.2.4.4.9
Apply the product rule to .
Step 5.2.4.4.10
Raise to the power of .
Step 5.2.4.4.11
Rewrite as .
Step 5.2.4.4.12
Multiply by .
Step 5.2.4.4.13
Raise to the power of .
Step 5.2.4.4.14
Multiply by .
Step 5.2.4.4.15
Apply the product rule to .
Step 5.2.4.4.16
Raise to the power of .
Step 5.2.4.4.17
Rewrite as .
Step 5.2.4.4.18
Multiply by .
Step 5.2.4.4.19
Raise to the power of .
Step 5.2.4.4.20
Multiply by .
Step 5.2.4.4.21
Multiply by .
Step 5.2.4.4.22
Raise to the power of .
Step 5.2.4.4.23
Multiply by .
Step 5.2.4.4.24
Raise to the power of .
Step 5.2.4.5
Simplify each term.
Step 5.2.4.5.1
Apply the distributive property.
Step 5.2.4.5.2
Multiply by .
Step 5.2.4.6
Add and .
Step 5.2.4.7
Use the Binomial Theorem.
Step 5.2.4.8
Simplify each term.
Step 5.2.4.8.1
Apply the product rule to .
Step 5.2.4.8.2
Raise to the power of .
Step 5.2.4.8.3
Rewrite as .
Step 5.2.4.8.4
Apply the product rule to .
Step 5.2.4.8.5
Raise to the power of .
Step 5.2.4.8.6
Rewrite as .
Step 5.2.4.8.7
Multiply by .
Step 5.2.4.8.8
Multiply by .
Step 5.2.4.8.9
Apply the product rule to .
Step 5.2.4.8.10
Raise to the power of .
Step 5.2.4.8.11
Rewrite as .
Step 5.2.4.8.12
Multiply by .
Step 5.2.4.8.13
Raise to the power of .
Step 5.2.4.8.14
Multiply by .
Step 5.2.4.8.15
Multiply by .
Step 5.2.4.8.16
Raise to the power of .
Step 5.2.4.8.17
Multiply by .
Step 5.2.4.8.18
Raise to the power of .
Step 5.2.4.9
Apply the distributive property.
Step 5.2.4.10
Simplify.
Step 5.2.4.10.1
Multiply by .
Step 5.2.4.10.2
Multiply by .
Step 5.2.4.10.3
Multiply by .
Step 5.2.4.10.4
Multiply by .
Step 5.2.4.10.5
Multiply by .
Step 5.2.4.11
Simplify each term.
Step 5.2.4.11.1
Apply the distributive property.
Step 5.2.4.11.2
Multiply by .
Step 5.2.4.12
Add and .
Step 5.2.4.13
Use the Binomial Theorem.
Step 5.2.4.14
Simplify each term.
Step 5.2.4.14.1
Apply the product rule to .
Step 5.2.4.14.2
Raise to the power of .
Step 5.2.4.14.3
Rewrite as .
Step 5.2.4.14.4
Apply the product rule to .
Step 5.2.4.14.5
Raise to the power of .
Step 5.2.4.14.6
Rewrite as .
Step 5.2.4.14.7
Multiply by .
Step 5.2.4.14.8
Multiply by .
Step 5.2.4.14.9
Multiply by .
Step 5.2.4.14.10
Raise to the power of .
Step 5.2.4.14.11
Multiply by .
Step 5.2.4.14.12
Raise to the power of .
Step 5.2.4.15
Apply the distributive property.
Step 5.2.4.16
Simplify.
Step 5.2.4.16.1
Multiply by .
Step 5.2.4.16.2
Multiply by .
Step 5.2.4.16.3
Multiply by .
Step 5.2.4.16.4
Multiply by .
Step 5.2.4.17
Simplify each term.
Step 5.2.4.17.1
Apply the distributive property.
Step 5.2.4.17.2
Multiply by .
Step 5.2.4.18
Add and .
Step 5.2.4.19
Rewrite as .
Step 5.2.4.20
Expand using the FOIL Method.
Step 5.2.4.20.1
Apply the distributive property.
Step 5.2.4.20.2
Apply the distributive property.
Step 5.2.4.20.3
Apply the distributive property.
Step 5.2.4.21
Simplify and combine like terms.
Step 5.2.4.21.1
Simplify each term.
Step 5.2.4.21.1.1
Multiply .
Step 5.2.4.21.1.1.1
Multiply by .
Step 5.2.4.21.1.1.2
Raise to the power of .
Step 5.2.4.21.1.1.3
Raise to the power of .
Step 5.2.4.21.1.1.4
Use the power rule to combine exponents.
Step 5.2.4.21.1.1.5
Add and .
Step 5.2.4.21.1.2
Rewrite as .
Step 5.2.4.21.1.3
Multiply by .
Step 5.2.4.21.1.4
Multiply by .
Step 5.2.4.21.1.5
Multiply by .
Step 5.2.4.21.2
Subtract from .
Step 5.2.4.22
Apply the distributive property.
Step 5.2.4.23
Simplify.
Step 5.2.4.23.1
Multiply by .
Step 5.2.4.23.2
Multiply by .
Step 5.2.4.23.3
Multiply by .
Step 5.2.4.24
Simplify each term.
Step 5.2.4.24.1
Apply the distributive property.
Step 5.2.4.24.2
Multiply by .
Step 5.2.4.25
Add and .
Step 5.2.4.26
Apply the distributive property.
Step 5.2.4.27
Multiply by .
Step 5.2.4.28
Multiply by .
Step 5.2.5
Simplify terms.
Step 5.2.5.1
Combine the opposite terms in .
Step 5.2.5.1.1
Add and .
Step 5.2.5.1.2
Add and .
Step 5.2.5.1.3
Subtract from .
Step 5.2.5.1.4
Add and .
Step 5.2.5.1.5
Add and .
Step 5.2.5.1.6
Add and .
Step 5.2.5.1.7
Add and .
Step 5.2.5.1.8
Add and .
Step 5.2.5.1.9
Subtract from .
Step 5.2.5.1.10
Add and .
Step 5.2.5.1.11
Add and .
Step 5.2.5.1.12
Add and .
Step 5.2.5.2
Subtract from .
Step 5.2.5.3
Combine the opposite terms in .
Step 5.2.5.3.1
Add and .
Step 5.2.5.3.2
Add and .
Step 5.2.5.4
Subtract from .
Step 5.2.5.5
Add and .
Step 5.2.5.6
Subtract from .
Step 5.2.5.7
Combine the opposite terms in .
Step 5.2.5.7.1
Add and .
Step 5.2.5.7.2
Add and .
Step 5.2.5.8
Cancel the common factor of .
Step 5.2.5.8.1
Cancel the common factor.
Step 5.2.5.8.2
Divide by .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Remove parentheses.
Step 5.3.4
Simplify each term.
Step 5.3.4.1
Simplify each term.
Step 5.3.4.1.1
Combine the numerators over the common denominator.
Step 5.3.4.1.2
Simplify the numerator.
Step 5.3.4.1.2.1
Make each term match the terms from the binomial theorem formula.
Step 5.3.4.1.2.2
Factor using the binomial theorem.
Step 5.3.4.1.3
Rewrite as .
Step 5.3.4.1.4
Rewrite as .
Step 5.3.4.1.5
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4.2
To write as a fraction with a common denominator, multiply by .
Step 5.3.4.3
Combine and .
Step 5.3.4.4
Combine the numerators over the common denominator.
Step 5.3.4.5
Simplify the numerator.
Step 5.3.4.5.1
Multiply by .
Step 5.3.4.5.2
Subtract from .
Step 5.3.4.6
Cancel the common factor of .
Step 5.3.4.6.1
Cancel the common factor.
Step 5.3.4.6.2
Rewrite the expression.
Step 5.3.5
Combine the opposite terms in .
Step 5.3.5.1
Add and .
Step 5.3.5.2
Add and .
Step 5.4
Since and , then is the inverse of .