Algebra Examples

Find the Remainder (6x^4-20x^3+15x^2-8)÷(-x^2+2x-1)
Step 1
To calculate the remainder, first divide the polynomials.
Tap for more steps...
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+--++-
Step 1.2
Divide the highest order term in the dividend by the highest order term in divisor .
-
-+--++-
Step 1.3
Multiply the new quotient term by the divisor.
-
-+--++-
+-+
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in
-
-+--++-
-+-
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
-+--++-
-+-
-+
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
-
-+--++-
-+-
-++
Step 1.7
Divide the highest order term in the dividend by the highest order term in divisor .
-+
-+--++-
-+-
-++
Step 1.8
Multiply the new quotient term by the divisor.
-+
-+--++-
-+-
-++
-+-
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in
-+
-+--++-
-+-
-++
+-+
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
-+--++-
-+-
-++
+-+
-+
Step 1.11
Pull the next terms from the original dividend down into the current dividend.
-+
-+--++-
-+-
-++
+-+
-+-
Step 1.12
Divide the highest order term in the dividend by the highest order term in divisor .
-++
-+--++-
-+-
-++
+-+
-+-
Step 1.13
Multiply the new quotient term by the divisor.
-++
-+--++-
-+-
-++
+-+
-+-
-+-
Step 1.14
The expression needs to be subtracted from the dividend, so change all the signs in
-++
-+--++-
-+-
-++
+-+
-+-
+-+
Step 1.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++
-+--++-
-+-
-++
+-+
-+-
+-+
--
Step 1.16
The final answer is the quotient plus the remainder over the divisor.
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.