Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.2
Simplify terms.
Step 1.1.2.1
Simplify each term.
Step 1.1.2.1.1
Rewrite using the commutative property of multiplication.
Step 1.1.2.1.2
Multiply by by adding the exponents.
Step 1.1.2.1.2.1
Move .
Step 1.1.2.1.2.2
Use the power rule to combine exponents.
Step 1.1.2.1.2.3
Add and .
Step 1.1.2.1.3
Rewrite using the commutative property of multiplication.
Step 1.1.2.1.4
Multiply by by adding the exponents.
Step 1.1.2.1.4.1
Move .
Step 1.1.2.1.4.2
Multiply by .
Step 1.1.2.1.4.2.1
Raise to the power of .
Step 1.1.2.1.4.2.2
Use the power rule to combine exponents.
Step 1.1.2.1.4.3
Add and .
Step 1.1.2.1.5
Move to the left of .
Step 1.1.2.1.6
Rewrite using the commutative property of multiplication.
Step 1.1.2.1.7
Multiply by by adding the exponents.
Step 1.1.2.1.7.1
Move .
Step 1.1.2.1.7.2
Use the power rule to combine exponents.
Step 1.1.2.1.7.3
Add and .
Step 1.1.2.1.8
Multiply by .
Step 1.1.2.1.9
Rewrite using the commutative property of multiplication.
Step 1.1.2.1.10
Multiply by by adding the exponents.
Step 1.1.2.1.10.1
Move .
Step 1.1.2.1.10.2
Multiply by .
Step 1.1.2.1.10.2.1
Raise to the power of .
Step 1.1.2.1.10.2.2
Use the power rule to combine exponents.
Step 1.1.2.1.10.3
Add and .
Step 1.1.2.1.11
Multiply by .
Step 1.1.2.1.12
Multiply by .
Step 1.1.2.1.13
Multiply by .
Step 1.1.2.1.14
Multiply by .
Step 1.1.2.1.15
Multiply by .
Step 1.1.2.2
Simplify by adding terms.
Step 1.1.2.2.1
Add and .
Step 1.1.2.2.2
Subtract from .
Step 2
Step 2.1
Factor using the rational roots test.
Step 2.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 2.1.3.1
Substitute into the polynomial.
Step 2.1.3.2
Raise to the power of .
Step 2.1.3.3
Multiply by .
Step 2.1.3.4
Raise to the power of .
Step 2.1.3.5
Multiply by .
Step 2.1.3.6
Add and .
Step 2.1.3.7
Raise to the power of .
Step 2.1.3.8
Multiply by .
Step 2.1.3.9
Add and .
Step 2.1.3.10
Raise to the power of .
Step 2.1.3.11
Multiply by .
Step 2.1.3.12
Add and .
Step 2.1.3.13
Raise to the power of .
Step 2.1.3.14
Multiply by .
Step 2.1.3.15
Subtract from .
Step 2.1.3.16
Multiply by .
Step 2.1.3.17
Subtract from .
Step 2.1.3.18
Add and .
Step 2.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.1.5
Divide by .
Step 2.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | + | + | - | - | + |
Step 2.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | + | - | - | + |
Step 2.1.5.3
Multiply the new quotient term by the divisor.
- | + | + | + | - | - | + | |||||||||||
+ | - |
Step 2.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | + | - | - | + | |||||||||||
- | + |
Step 2.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ |
Step 2.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + |
Step 2.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + |
Step 2.1.5.8
Multiply the new quotient term by the divisor.
+ | |||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | - |
Step 2.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + |
Step 2.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ |
Step 2.1.5.11
Pull the next terms from the original dividend down into the current dividend.
+ | |||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + |
Step 2.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | ||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + |
Step 2.1.5.13
Multiply the new quotient term by the divisor.
+ | + | ||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
+ | - |
Step 2.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + |
Step 2.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ |
Step 2.1.5.16
Pull the next terms from the original dividend down into the current dividend.
+ | + | ||||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - |
Step 2.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | |||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - |
Step 2.1.5.18
Multiply the new quotient term by the divisor.
+ | + | + | |||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
+ | - |
Step 2.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | |||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + |
Step 2.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | |||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- |
Step 2.1.5.21
Pull the next terms from the original dividend down into the current dividend.
+ | + | + | |||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - |
Step 2.1.5.22
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | - | ||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - |
Step 2.1.5.23
Multiply the new quotient term by the divisor.
+ | + | + | - | ||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
- | + |
Step 2.1.5.24
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | - | ||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - |
Step 2.1.5.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | - | ||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- |
Step 2.1.5.26
Pull the next terms from the original dividend down into the current dividend.
+ | + | + | - | ||||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- | + |
Step 2.1.5.27
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | - | - | |||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- | + |
Step 2.1.5.28
Multiply the new quotient term by the divisor.
+ | + | + | - | - | |||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | + |
Step 2.1.5.29
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | - | - | |||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
+ | - |
Step 2.1.5.30
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | - | - | |||||||||||||
- | + | + | + | - | - | + | |||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | + | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
- | - | ||||||||||||||||
+ | - | ||||||||||||||||
- | + | ||||||||||||||||
+ | - | ||||||||||||||||
Step 2.1.5.31
Since the remander is , the final answer is the quotient.
Step 2.1.6
Write as a set of factors.
Step 2.2
Regroup terms.
Step 2.3
Factor out of .
Step 2.3.1
Factor out of .
Step 2.3.2
Factor out of .
Step 2.3.3
Factor out of .
Step 2.3.4
Factor out of .
Step 2.3.5
Factor out of .
Step 2.4
Rewrite as .
Step 2.5
Let . Substitute for all occurrences of .
Step 2.6
Factor using the AC method.
Step 2.6.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.6.2
Write the factored form using these integers.
Step 2.7
Replace all occurrences of with .
Step 2.8
Rewrite as .
Step 2.9
Factor.
Step 2.9.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.9.2
Remove unnecessary parentheses.
Step 2.10
Factor out of .
Step 2.10.1
Factor out of .
Step 2.10.2
Factor out of .
Step 2.10.3
Factor out of .
Step 2.10.4
Factor out of .
Step 2.10.5
Factor out of .
Step 2.11
Rewrite as .
Step 2.12
Let . Substitute for all occurrences of .
Step 2.13
Factor using the AC method.
Step 2.13.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.13.2
Write the factored form using these integers.
Step 2.14
Replace all occurrences of with .
Step 2.15
Rewrite as .
Step 2.16
Factor.
Step 2.16.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.16.2
Remove unnecessary parentheses.
Step 2.17
Factor out of .
Step 2.17.1
Factor out of .
Step 2.17.1.1
Factor out of .
Step 2.17.1.2
Factor out of .
Step 2.17.1.3
Factor out of .
Step 2.17.2
Remove unnecessary parentheses.
Step 3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Add to both sides of the equation.
Step 4.2.2
Divide each term in by and simplify.
Step 4.2.2.1
Divide each term in by .
Step 4.2.2.2
Simplify the left side.
Step 4.2.2.2.1
Cancel the common factor of .
Step 4.2.2.2.1.1
Cancel the common factor.
Step 4.2.2.2.1.2
Divide by .
Step 5
Step 5.1
Set equal to .
Step 5.2
Subtract from both sides of the equation.
Step 6
Step 6.1
Set equal to .
Step 6.2
Add to both sides of the equation.
Step 7
Step 7.1
Set equal to .
Step 7.2
Solve for .
Step 7.2.1
Subtract from both sides of the equation.
Step 7.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.2.3
Simplify .
Step 7.2.3.1
Rewrite as .
Step 7.2.3.2
Rewrite as .
Step 7.2.3.3
Rewrite as .
Step 7.2.3.4
Rewrite as .
Step 7.2.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 7.2.3.6
Move to the left of .
Step 7.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.2.4.1
First, use the positive value of the to find the first solution.
Step 7.2.4.2
Next, use the negative value of the to find the second solution.
Step 7.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 8
Step 8.1
Set equal to .
Step 8.2
Subtract from both sides of the equation.
Step 9
The final solution is all the values that make true.