Algebra Examples

Find the Roots (Zeros) f(x)=(x^2-4x+4)/(x^2-4)
f(x)=x2-4x+4x2-4f(x)=x24x+4x24
Step 1
Set x2-4x+4x2-4x24x+4x24 equal to 00.
x2-4x+4x2-4=0x24x+4x24=0
Step 2
Solve for xx.
Tap for more steps...
Step 2.1
Set the numerator equal to zero.
x2-4x+4=0x24x+4=0
Step 2.2
Solve the equation for xx.
Tap for more steps...
Step 2.2.1
Factor using the perfect square rule.
Tap for more steps...
Step 2.2.1.1
Rewrite 44 as 2222.
x2-4x+22=0x24x+22=0
Step 2.2.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
4x=2x24x=2x2
Step 2.2.1.3
Rewrite the polynomial.
x2-2x2+22=0x22x2+22=0
Step 2.2.1.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a22ab+b2=(ab)2, where a=xa=x and b=2b=2.
(x-2)2=0(x2)2=0
(x-2)2=0(x2)2=0
Step 2.2.2
Set the x-2x2 equal to 00.
x-2=0x2=0
Step 2.2.3
Add 22 to both sides of the equation.
x=2x=2
x=2x=2
Step 2.3
Exclude the solutions that do not make x2-4x+4x2-4=0x24x+4x24=0 true.
No solutionNo solution
No solutionNo solution
 [x2  12  π  xdx ]  x2  12  π  xdx