Enter a problem...
Algebra Examples
a54(2a34)3a14a54(2a34)3a14
Step 1
Move a14a14 to the numerator using the negative exponent rule 1bn=b-n1bn=b−n.
a54(2a34)3a-14a54(2a34)3a−14
Step 2
Step 2.1
Move a-14a−14.
a-14a54(2a34)3a−14a54(2a34)3
Step 2.2
Use the power rule aman=am+naman=am+n to combine exponents.
a-14+54(2a34)3a−14+54(2a34)3
Step 2.3
Combine the numerators over the common denominator.
a-1+54(2a34)3a−1+54(2a34)3
Step 2.4
Add -1−1 and 55.
a44(2a34)3a44(2a34)3
Step 2.5
Divide 44 by 44.
a1(2a34)3a1(2a34)3
a1(2a34)3a1(2a34)3
Step 3
Simplify a1(2a34)3a1(2a34)3.
a(2a34)3a(2a34)3
Step 4
Apply the product rule to 2a342a34.
a(23(a34)3)a(23(a34)3)
Step 5
Rewrite using the commutative property of multiplication.
23a(a34)323a(a34)3
Step 6
Raise 22 to the power of 33.
8a(a34)38a(a34)3
Step 7
Step 7.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
8a⋅a34⋅38a⋅a34⋅3
Step 7.2
Multiply 34⋅334⋅3.
Step 7.2.1
Combine 3434 and 33.
8a⋅a3⋅348a⋅a3⋅34
Step 7.2.2
Multiply 33 by 33.
8a⋅a948a⋅a94
8a⋅a948a⋅a94
8a⋅a948a⋅a94
Step 8
Step 8.1
Move a94a94.
8(a94a)8(a94a)
Step 8.2
Multiply a94a94 by aa.
Step 8.2.1
Raise aa to the power of 11.
8(a94a1)8(a94a1)
Step 8.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
8a94+18a94+1
8a94+18a94+1
Step 8.3
Write 11 as a fraction with a common denominator.
8a94+448a94+44
Step 8.4
Combine the numerators over the common denominator.
8a9+448a9+44
Step 8.5
Add 99 and 44.
8a1348a134
8a1348a134