Algebra Examples

Simplify (a^(5/4)(2a^(3/4))^3)/(a^(1/4))
a54(2a34)3a14a54(2a34)3a14
Step 1
Move a14a14 to the numerator using the negative exponent rule 1bn=b-n1bn=bn.
a54(2a34)3a-14a54(2a34)3a14
Step 2
Multiply a54a54 by a-14a14 by adding the exponents.
Tap for more steps...
Step 2.1
Move a-14a14.
a-14a54(2a34)3a14a54(2a34)3
Step 2.2
Use the power rule aman=am+naman=am+n to combine exponents.
a-14+54(2a34)3a14+54(2a34)3
Step 2.3
Combine the numerators over the common denominator.
a-1+54(2a34)3a1+54(2a34)3
Step 2.4
Add -11 and 55.
a44(2a34)3a44(2a34)3
Step 2.5
Divide 44 by 44.
a1(2a34)3a1(2a34)3
a1(2a34)3a1(2a34)3
Step 3
Simplify a1(2a34)3a1(2a34)3.
a(2a34)3a(2a34)3
Step 4
Apply the product rule to 2a342a34.
a(23(a34)3)a(23(a34)3)
Step 5
Rewrite using the commutative property of multiplication.
23a(a34)323a(a34)3
Step 6
Raise 22 to the power of 33.
8a(a34)38a(a34)3
Step 7
Multiply the exponents in (a34)3(a34)3.
Tap for more steps...
Step 7.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
8aa3438aa343
Step 7.2
Multiply 343343.
Tap for more steps...
Step 7.2.1
Combine 3434 and 33.
8aa3348aa334
Step 7.2.2
Multiply 33 by 33.
8aa948aa94
8aa948aa94
8aa948aa94
Step 8
Multiply aa by a94a94 by adding the exponents.
Tap for more steps...
Step 8.1
Move a94a94.
8(a94a)8(a94a)
Step 8.2
Multiply a94a94 by aa.
Tap for more steps...
Step 8.2.1
Raise aa to the power of 11.
8(a94a1)8(a94a1)
Step 8.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
8a94+18a94+1
8a94+18a94+1
Step 8.3
Write 11 as a fraction with a common denominator.
8a94+448a94+44
Step 8.4
Combine the numerators over the common denominator.
8a9+448a9+44
Step 8.5
Add 99 and 44.
8a1348a134
8a1348a134
 [x2  12  π  xdx ]  x2  12  π  xdx