Algebra Examples

Solve for a R=1/3s(a-b)
R=13s(a-b)
Step 1
Rewrite the equation as 13(s(a-b))=R.
13(s(a-b))=R
Step 2
Multiply both sides of the equation by 3.
3(13(s(a-b)))=3R
Step 3
Simplify the left side.
Tap for more steps...
Step 3.1
Simplify 3(13(s(a-b))).
Tap for more steps...
Step 3.1.1
Apply the distributive property.
3(13(sa+s(-b)))=3R
Step 3.1.2
Rewrite using the commutative property of multiplication.
3(13(sa-sb))=3R
Step 3.1.3
Apply the distributive property.
3(13(sa)+13(-sb))=3R
Step 3.1.4
Multiply 13(sa).
Tap for more steps...
Step 3.1.4.1
Combine s and 13.
3(s3a+13(-sb))=3R
Step 3.1.4.2
Combine s3 and a.
3(sa3+13(-sb))=3R
3(sa3+13(-sb))=3R
Step 3.1.5
Multiply 13(-sb).
Tap for more steps...
Step 3.1.5.1
Combine 13 and s.
3(sa3-s3b)=3R
Step 3.1.5.2
Combine b and s3.
3(sa3-bs3)=3R
3(sa3-bs3)=3R
Step 3.1.6
Apply the distributive property.
3sa3+3(-bs3)=3R
Step 3.1.7
Cancel the common factor of 3.
Tap for more steps...
Step 3.1.7.1
Cancel the common factor.
3sa3+3(-bs3)=3R
Step 3.1.7.2
Rewrite the expression.
sa+3(-bs3)=3R
sa+3(-bs3)=3R
Step 3.1.8
Cancel the common factor of 3.
Tap for more steps...
Step 3.1.8.1
Move the leading negative in -bs3 into the numerator.
sa+3-bs3=3R
Step 3.1.8.2
Cancel the common factor.
sa+3-bs3=3R
Step 3.1.8.3
Rewrite the expression.
sa-bs=3R
sa-bs=3R
sa-bs=3R
sa-bs=3R
Step 4
Add bs to both sides of the equation.
sa=3R+bs
Step 5
Divide each term in sa=3R+bs by s and simplify.
Tap for more steps...
Step 5.1
Divide each term in sa=3R+bs by s.
sas=3Rs+bss
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of s.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
sas=3Rs+bss
Step 5.2.1.2
Divide a by 1.
a=3Rs+bss
a=3Rs+bss
a=3Rs+bss
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Cancel the common factor of s.
Tap for more steps...
Step 5.3.1.1
Cancel the common factor.
a=3Rs+bss
Step 5.3.1.2
Divide b by 1.
a=3Rs+b
a=3Rs+b
a=3Rs+b
a=3Rs+b
 [x2  12  π  xdx ]