Algebra Examples

Find the Inverse f(x)=1/5(x-2)^2+3
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Combine and .
Step 3.4
Multiply both sides of the equation by .
Step 3.5
Simplify both sides of the equation.
Tap for more steps...
Step 3.5.1
Simplify the left side.
Tap for more steps...
Step 3.5.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.1.1.1
Cancel the common factor.
Step 3.5.1.1.2
Rewrite the expression.
Step 3.5.2
Simplify the right side.
Tap for more steps...
Step 3.5.2.1
Simplify .
Tap for more steps...
Step 3.5.2.1.1
Apply the distributive property.
Step 3.5.2.1.2
Multiply by .
Step 3.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.7
Factor out of .
Tap for more steps...
Step 3.7.1
Factor out of .
Step 3.7.2
Factor out of .
Step 3.7.3
Factor out of .
Step 3.8
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.8.1
First, use the positive value of the to find the first solution.
Step 3.8.2
Add to both sides of the equation.
Step 3.8.3
Next, use the negative value of the to find the second solution.
Step 3.8.4
Add to both sides of the equation.
Step 3.8.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 5.2
Find the range of .
Tap for more steps...
Step 5.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 5.3
Find the domain of .
Tap for more steps...
Step 5.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 5.3.2
Solve for .
Tap for more steps...
Step 5.3.2.1
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.2.1.1
Divide each term in by .
Step 5.3.2.1.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.2.1.1
Cancel the common factor.
Step 5.3.2.1.2.1.2
Divide by .
Step 5.3.2.1.3
Simplify the right side.
Tap for more steps...
Step 5.3.2.1.3.1
Divide by .
Step 5.3.2.2
Add to both sides of the inequality.
Step 5.3.3
The domain is all values of that make the expression defined.
Step 5.4
Find the domain of .
Tap for more steps...
Step 5.4.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 5.5
Since the domain of is the range of and the range of is the domain of , then is the inverse of .
Step 6