Algebra Examples

Evaluate -2sin(theta)^2+cos(theta)+1=0
Step 1
Replace the with based on the identity.
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Apply the distributive property.
Step 2.2
Multiply by .
Step 2.3
Multiply by .
Step 3
Add and .
Step 4
Substitute for .
Step 5
Factor by grouping.
Tap for more steps...
Step 5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 5.1.1
Multiply by .
Step 5.1.2
Rewrite as plus
Step 5.1.3
Apply the distributive property.
Step 5.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 5.2.1
Group the first two terms and the last two terms.
Step 5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7
Set equal to and solve for .
Tap for more steps...
Step 7.1
Set equal to .
Step 7.2
Solve for .
Tap for more steps...
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 7.2.2.1
Divide each term in by .
Step 7.2.2.2
Simplify the left side.
Tap for more steps...
Step 7.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.2.2.2.1.1
Cancel the common factor.
Step 7.2.2.2.1.2
Divide by .
Step 8
Set equal to and solve for .
Tap for more steps...
Step 8.1
Set equal to .
Step 8.2
Subtract from both sides of the equation.
Step 9
The final solution is all the values that make true.
Step 10
Substitute for .
Step 11
Set up each of the solutions to solve for .
Step 12
Solve for in .
Tap for more steps...
Step 12.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 12.2
Simplify the right side.
Tap for more steps...
Step 12.2.1
The exact value of is .
Step 12.3
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 12.4
Simplify .
Tap for more steps...
Step 12.4.1
To write as a fraction with a common denominator, multiply by .
Step 12.4.2
Combine fractions.
Tap for more steps...
Step 12.4.2.1
Combine and .
Step 12.4.2.2
Combine the numerators over the common denominator.
Step 12.4.3
Simplify the numerator.
Tap for more steps...
Step 12.4.3.1
Multiply by .
Step 12.4.3.2
Subtract from .
Step 12.5
Find the period of .
Tap for more steps...
Step 12.5.1
The period of the function can be calculated using .
Step 12.5.2
Replace with in the formula for period.
Step 12.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 12.5.4
Divide by .
Step 12.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 13
Solve for in .
Tap for more steps...
Step 13.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 13.2
Simplify the right side.
Tap for more steps...
Step 13.2.1
The exact value of is .
Step 13.3
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 13.4
Subtract from .
Step 13.5
Find the period of .
Tap for more steps...
Step 13.5.1
The period of the function can be calculated using .
Step 13.5.2
Replace with in the formula for period.
Step 13.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 13.5.4
Divide by .
Step 13.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 14
List all of the solutions.
, for any integer
Step 15
Consolidate the answers.
, for any integer