Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Cancel the common factor of and .
Step 1.2.3.1.1
Factor out of .
Step 1.2.3.1.2
Cancel the common factors.
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factor.
Step 1.2.3.1.2.3
Rewrite the expression.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Multiply by .
Step 2.2.1.1.3.1.2.3
Multiply by .
Step 2.2.1.1.3.1.3
Multiply .
Step 2.2.1.1.3.1.3.1
Multiply by .
Step 2.2.1.1.3.1.3.2
Multiply by .
Step 2.2.1.1.3.1.3.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply .
Step 2.2.1.1.3.1.4.1
Multiply by .
Step 2.2.1.1.3.1.4.2
Multiply by .
Step 2.2.1.1.3.1.4.3
Raise to the power of .
Step 2.2.1.1.3.1.4.4
Raise to the power of .
Step 2.2.1.1.3.1.4.5
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.4.6
Add and .
Step 2.2.1.1.3.1.4.7
Multiply by .
Step 2.2.1.1.3.2
Add and .
Step 2.2.1.1.4
Cancel the common factor of .
Step 2.2.1.1.4.1
Factor out of .
Step 2.2.1.1.4.2
Cancel the common factor.
Step 2.2.1.1.4.3
Rewrite the expression.
Step 2.2.1.1.5
Apply the distributive property.
Step 2.2.1.1.6
Simplify.
Step 2.2.1.1.6.1
Cancel the common factor of .
Step 2.2.1.1.6.1.1
Factor out of .
Step 2.2.1.1.6.1.2
Cancel the common factor.
Step 2.2.1.1.6.1.3
Rewrite the expression.
Step 2.2.1.1.6.2
Cancel the common factor of .
Step 2.2.1.1.6.2.1
Factor out of .
Step 2.2.1.1.6.2.2
Cancel the common factor.
Step 2.2.1.1.6.2.3
Rewrite the expression.
Step 2.2.1.1.6.3
Cancel the common factor of .
Step 2.2.1.1.6.3.1
Factor out of .
Step 2.2.1.1.6.3.2
Cancel the common factor.
Step 2.2.1.1.6.3.3
Rewrite the expression.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Combine the numerators over the common denominator.
Step 2.2.1.6
Multiply by .
Step 2.2.1.7
Add and .
Step 2.2.1.8
Find the common denominator.
Step 2.2.1.8.1
Write as a fraction with denominator .
Step 2.2.1.8.2
Multiply by .
Step 2.2.1.8.3
Multiply by .
Step 2.2.1.8.4
Multiply by .
Step 2.2.1.8.5
Multiply by .
Step 2.2.1.8.6
Multiply by .
Step 2.2.1.9
Simplify terms.
Step 2.2.1.9.1
Combine the numerators over the common denominator.
Step 2.2.1.9.2
Simplify each term.
Step 2.2.1.9.2.1
Multiply by .
Step 2.2.1.9.2.2
Apply the distributive property.
Step 2.2.1.9.2.3
Multiply by .
Step 2.2.1.9.2.4
Multiply by .
Step 2.2.1.9.3
Add and .
Step 2.2.1.10
Simplify the numerator.
Step 2.2.1.10.1
Factor out of .
Step 2.2.1.10.1.1
Factor out of .
Step 2.2.1.10.1.2
Factor out of .
Step 2.2.1.10.1.3
Factor out of .
Step 2.2.1.10.1.4
Factor out of .
Step 2.2.1.10.1.5
Factor out of .
Step 2.2.1.10.2
Reorder terms.
Step 2.2.1.11
Simplify with factoring out.
Step 2.2.1.11.1
Factor out of .
Step 2.2.1.11.2
Factor out of .
Step 2.2.1.11.3
Factor out of .
Step 2.2.1.11.4
Rewrite as .
Step 2.2.1.11.5
Factor out of .
Step 2.2.1.11.6
Simplify the expression.
Step 2.2.1.11.6.1
Rewrite as .
Step 2.2.1.11.6.2
Move the negative in front of the fraction.
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Move the leading negative in into the numerator.
Step 3.2.1.1.1.2
Move the leading negative in into the numerator.
Step 3.2.1.1.1.3
Factor out of .
Step 3.2.1.1.1.4
Cancel the common factor.
Step 3.2.1.1.1.5
Rewrite the expression.
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Factor out of .
Step 3.2.1.1.2.2
Cancel the common factor.
Step 3.2.1.1.2.3
Rewrite the expression.
Step 3.2.1.1.3
Multiply.
Step 3.2.1.1.3.1
Multiply by .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Cancel the common factor of .
Step 3.2.2.1.1.1
Move the leading negative in into the numerator.
Step 3.2.2.1.1.2
Factor out of .
Step 3.2.2.1.1.3
Cancel the common factor.
Step 3.2.2.1.1.4
Rewrite the expression.
Step 3.2.2.1.2
Multiply by .
Step 3.3
Add to both sides of the equation.
Step 3.4
Add and .
Step 3.5
Factor the left side of the equation.
Step 3.5.1
Factor out of .
Step 3.5.1.1
Factor out of .
Step 3.5.1.2
Factor out of .
Step 3.5.1.3
Factor out of .
Step 3.5.1.4
Factor out of .
Step 3.5.1.5
Factor out of .
Step 3.5.2
Factor.
Step 3.5.2.1
Factor using the AC method.
Step 3.5.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.5.2.1.2
Write the factored form using these integers.
Step 3.5.2.2
Remove unnecessary parentheses.
Step 3.6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.7
Set equal to and solve for .
Step 3.7.1
Set equal to .
Step 3.7.2
Add to both sides of the equation.
Step 3.8
Set equal to and solve for .
Step 3.8.1
Set equal to .
Step 3.8.2
Add to both sides of the equation.
Step 3.9
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Cancel the common factor of and .
Step 4.2.1.2.1
Factor out of .
Step 4.2.1.2.2
Cancel the common factors.
Step 4.2.1.2.2.1
Factor out of .
Step 4.2.1.2.2.2
Cancel the common factor.
Step 4.2.1.2.2.3
Rewrite the expression.
Step 4.2.1.3
Combine the numerators over the common denominator.
Step 4.2.1.4
Simplify the expression.
Step 4.2.1.4.1
Add and .
Step 4.2.1.4.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Cancel the common factor of and .
Step 5.2.1.2.1
Factor out of .
Step 5.2.1.2.2
Cancel the common factors.
Step 5.2.1.2.2.1
Factor out of .
Step 5.2.1.2.2.2
Cancel the common factor.
Step 5.2.1.2.2.3
Rewrite the expression.
Step 5.2.1.3
Combine the numerators over the common denominator.
Step 5.2.1.4
Simplify the expression.
Step 5.2.1.4.1
Add and .
Step 5.2.1.4.2
Divide by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8