Algebra Examples

Simplify cube root of (108x^9y^10)/(2xy^3)
3108x9y102xy33108x9y102xy3
Step 1
Reduce the expression 108x9y102xy3108x9y102xy3 by cancelling the common factors.
Tap for more steps...
Step 1.1
Factor 22 out of 108x9y10108x9y10.
32(54x9y10)2xy332(54x9y10)2xy3
Step 1.2
Factor 22 out of 2xy32xy3.
32(54x9y10)2(xy3)32(54x9y10)2(xy3)
Step 1.3
Cancel the common factor.
32(54x9y10)2(xy3)
Step 1.4
Rewrite the expression.
354x9y10xy3
354x9y10xy3
Step 2
Cancel the common factor of x9 and x.
Tap for more steps...
Step 2.1
Factor x out of 54x9y10.
3x(54x8y10)xy3
Step 2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1
Factor x out of xy3.
3x(54x8y10)x(y3)
Step 2.2.2
Cancel the common factor.
3x(54x8y10)xy3
Step 2.2.3
Rewrite the expression.
354x8y10y3
354x8y10y3
354x8y10y3
Step 3
Cancel the common factor of y10 and y3.
Tap for more steps...
Step 3.1
Factor y3 out of 54x8y10.
3y3(54x8y7)y3
Step 3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1
Multiply by 1.
3y3(54x8y7)y31
Step 3.2.2
Cancel the common factor.
3y3(54x8y7)y31
Step 3.2.3
Rewrite the expression.
354x8y71
Step 3.2.4
Divide 54x8y7 by 1.
354x8y7
354x8y7
354x8y7
Step 4
Rewrite 54x8y7 as (3x2y2)3(2x2y).
Tap for more steps...
Step 4.1
Factor 27 out of 54.
327(2)x8y7
Step 4.2
Rewrite 27 as 33.
3332x8y7
Step 4.3
Factor out x6.
3332(x6x2)y7
Step 4.4
Rewrite x6 as (x2)3.
3332((x2)3x2)y7
Step 4.5
Factor out y6.
3332((x2)3x2)(y6y)
Step 4.6
Rewrite y6 as (y2)3.
3332((x2)3x2)((y2)3y)
Step 4.7
Move x2.
3332((x2)3)(y2)3x2y
Step 4.8
Move 2.
3(33((x2)3))(y2)32x2y
Step 4.9
Rewrite (33((x2)3))(y2)3 as (3x2y2)3.
3(3x2y2)32x2y
Step 4.10
Add parentheses.
3(3x2y2)32(x2y)
Step 4.11
Add parentheses.
3(3x2y2)3(2x2y)
3(3x2y2)3(2x2y)
Step 5
Pull terms out from under the radical.
3x2y232x2y
 [x2  12  π  xdx ]