Enter a problem...
Algebra Examples
3√108x9y102xy33√108x9y102xy3
Step 1
Step 1.1
Factor 22 out of 108x9y10108x9y10.
3√2(54x9y10)2xy33√2(54x9y10)2xy3
Step 1.2
Factor 22 out of 2xy32xy3.
3√2(54x9y10)2(xy3)3√2(54x9y10)2(xy3)
Step 1.3
Cancel the common factor.
3√2(54x9y10)2(xy3)
Step 1.4
Rewrite the expression.
3√54x9y10xy3
3√54x9y10xy3
Step 2
Step 2.1
Factor x out of 54x9y10.
3√x(54x8y10)xy3
Step 2.2
Cancel the common factors.
Step 2.2.1
Factor x out of xy3.
3√x(54x8y10)x(y3)
Step 2.2.2
Cancel the common factor.
3√x(54x8y10)xy3
Step 2.2.3
Rewrite the expression.
3√54x8y10y3
3√54x8y10y3
3√54x8y10y3
Step 3
Step 3.1
Factor y3 out of 54x8y10.
3√y3(54x8y7)y3
Step 3.2
Cancel the common factors.
Step 3.2.1
Multiply by 1.
3√y3(54x8y7)y3⋅1
Step 3.2.2
Cancel the common factor.
3√y3(54x8y7)y3⋅1
Step 3.2.3
Rewrite the expression.
3√54x8y71
Step 3.2.4
Divide 54x8y7 by 1.
3√54x8y7
3√54x8y7
3√54x8y7
Step 4
Step 4.1
Factor 27 out of 54.
3√27(2)x8y7
Step 4.2
Rewrite 27 as 33.
3√33⋅2x8y7
Step 4.3
Factor out x6.
3√33⋅2(x6x2)y7
Step 4.4
Rewrite x6 as (x2)3.
3√33⋅2((x2)3x2)y7
Step 4.5
Factor out y6.
3√33⋅2((x2)3x2)(y6y)
Step 4.6
Rewrite y6 as (y2)3.
3√33⋅2((x2)3x2)((y2)3y)
Step 4.7
Move x2.
3√33⋅2((x2)3)(y2)3x2y
Step 4.8
Move 2.
3√(33((x2)3))(y2)3⋅2x2y
Step 4.9
Rewrite (33((x2)3))(y2)3 as (3x2y2)3.
3√(3x2y2)3⋅2x2y
Step 4.10
Add parentheses.
3√(3x2y2)3⋅2(x2y)
Step 4.11
Add parentheses.
3√(3x2y2)3⋅(2x2y)
3√(3x2y2)3⋅(2x2y)
Step 5
Pull terms out from under the radical.
3x2y23√2x2y