Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Multiply both sides by .
Step 3.3
Simplify.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Cancel the common factor of .
Step 3.3.1.1.1
Cancel the common factor.
Step 3.3.1.1.2
Rewrite the expression.
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Apply the distributive property.
Step 3.3.2.1.2
Multiply by .
Step 3.4
Solve for .
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Subtract from both sides of the equation.
Step 3.4.3
Factor out of .
Step 3.4.3.1
Factor out of .
Step 3.4.3.2
Factor out of .
Step 3.4.3.3
Factor out of .
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Combine the numerators over the common denominator.
Step 3.4.4.3.2
Rewrite as .
Step 3.4.4.3.3
Factor out of .
Step 3.4.4.3.4
Factor out of .
Step 3.4.4.3.5
Move the negative in front of the fraction.
Step 3.4.5
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.4.6
Expand the left side.
Step 3.4.6.1
Expand by moving outside the logarithm.
Step 3.4.6.2
The natural logarithm of is .
Step 3.4.6.3
Multiply by .
Step 3.4.7
Simplify the right side.
Step 3.4.7.1
Simplify .
Step 3.4.7.1.1
Split the fraction into two fractions.
Step 3.4.7.1.2
Move the negative in front of the fraction.
Step 3.4.7.1.3
Apply the distributive property.
Step 3.4.7.1.4
Multiply .
Step 3.4.7.1.4.1
Multiply by .
Step 3.4.7.1.4.2
Multiply by .
Step 3.4.8
Divide each term in by and simplify.
Step 3.4.8.1
Divide each term in by .
Step 3.4.8.2
Simplify the left side.
Step 3.4.8.2.1
Dividing two negative values results in a positive value.
Step 3.4.8.2.2
Divide by .
Step 3.4.8.3
Simplify the right side.
Step 3.4.8.3.1
Move the negative one from the denominator of .
Step 3.4.8.3.2
Rewrite as .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify terms.
Step 5.2.3.1
Remove parentheses.
Step 5.2.3.2
Combine the numerators over the common denominator.
Step 5.2.3.3
Write as a fraction with a common denominator.
Step 5.2.3.4
Combine the numerators over the common denominator.
Step 5.2.4
Simplify the numerator.
Step 5.2.4.1
Apply the distributive property.
Step 5.2.4.2
Multiply by .
Step 5.2.4.3
Multiply .
Step 5.2.4.3.1
Multiply by .
Step 5.2.4.3.2
Multiply by .
Step 5.2.4.4
Add and .
Step 5.2.4.5
Add and .
Step 5.2.4.6
Add and .
Step 5.2.5
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.6
Simplify the denominator.
Step 5.2.6.1
Write as a fraction with a common denominator.
Step 5.2.6.2
Combine the numerators over the common denominator.
Step 5.2.6.3
Rewrite in a factored form.
Step 5.2.6.3.1
Add and .
Step 5.2.6.3.2
Subtract from .
Step 5.2.6.3.3
Add and .
Step 5.2.7
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.8
Multiply by .
Step 5.2.9
Cancel the common factor of .
Step 5.2.9.1
Factor out of .
Step 5.2.9.2
Cancel the common factor.
Step 5.2.9.3
Rewrite the expression.
Step 5.2.10
Cancel the common factor of .
Step 5.2.10.1
Cancel the common factor.
Step 5.2.10.2
Rewrite the expression.
Step 5.2.11
Use logarithm rules to move out of the exponent.
Step 5.2.12
The natural logarithm of is .
Step 5.2.13
Multiply by .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Combine the numerators over the common denominator.
Step 5.3.3.2
Multiply .
Step 5.3.3.2.1
Multiply by .
Step 5.3.3.2.2
Multiply by .
Step 5.3.3.3
Exponentiation and log are inverse functions.
Step 5.3.3.4
Write as a fraction with a common denominator.
Step 5.3.3.5
Combine the numerators over the common denominator.
Step 5.3.3.6
Reorder terms.
Step 5.3.3.7
Rewrite in a factored form.
Step 5.3.3.7.1
Apply the distributive property.
Step 5.3.3.7.2
Multiply .
Step 5.3.3.7.2.1
Multiply by .
Step 5.3.3.7.2.2
Multiply by .
Step 5.3.3.7.3
Multiply by .
Step 5.3.3.7.4
Add and .
Step 5.3.3.7.5
Subtract from .
Step 5.3.3.7.6
Add and .
Step 5.3.4
Simplify the denominator.
Step 5.3.4.1
Combine the numerators over the common denominator.
Step 5.3.4.2
Multiply .
Step 5.3.4.2.1
Multiply by .
Step 5.3.4.2.2
Multiply by .
Step 5.3.4.3
Exponentiation and log are inverse functions.
Step 5.3.4.4
Write as a fraction with a common denominator.
Step 5.3.4.5
Combine the numerators over the common denominator.
Step 5.3.4.6
Reorder terms.
Step 5.3.4.7
Rewrite in a factored form.
Step 5.3.4.7.1
Subtract from .
Step 5.3.4.7.2
Add and .
Step 5.3.4.7.3
Add and .
Step 5.3.5
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.6
Cancel the common factor of .
Step 5.3.6.1
Factor out of .
Step 5.3.6.2
Cancel the common factor.
Step 5.3.6.3
Rewrite the expression.
Step 5.3.7
Cancel the common factor of .
Step 5.3.7.1
Cancel the common factor.
Step 5.3.7.2
Rewrite the expression.
Step 5.4
Since and , then is the inverse of .