Algebra Examples

Write in Standard Form (1-2n)^3-7n(n^2-2)
(1-2n)3-7n(n2-2)
Step 1
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
ax2+bx+c
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Use the Binomial Theorem.
13+312(-2n)+31(-2n)2+(-2n)3-7n(n2-2)
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
One to any power is one.
1+312(-2n)+31(-2n)2+(-2n)3-7n(n2-2)
Step 2.2.2
One to any power is one.
1+31(-2n)+31(-2n)2+(-2n)3-7n(n2-2)
Step 2.2.3
Multiply 3 by 1.
1+3(-2n)+31(-2n)2+(-2n)3-7n(n2-2)
Step 2.2.4
Multiply -2 by 3.
1-6n+31(-2n)2+(-2n)3-7n(n2-2)
Step 2.2.5
Multiply 3 by 1.
1-6n+3(-2n)2+(-2n)3-7n(n2-2)
Step 2.2.6
Apply the product rule to -2n.
1-6n+3((-2)2n2)+(-2n)3-7n(n2-2)
Step 2.2.7
Raise -2 to the power of 2.
1-6n+3(4n2)+(-2n)3-7n(n2-2)
Step 2.2.8
Multiply 4 by 3.
1-6n+12n2+(-2n)3-7n(n2-2)
Step 2.2.9
Apply the product rule to -2n.
1-6n+12n2+(-2)3n3-7n(n2-2)
Step 2.2.10
Raise -2 to the power of 3.
1-6n+12n2-8n3-7n(n2-2)
1-6n+12n2-8n3-7n(n2-2)
1-6n+12n2-8n3-7n(n2-2)
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Move 1.
-6n+12n2-8n3+1-7n(n2-2)
Step 3.2
Move -6n.
12n2-8n3-6n+1-7n(n2-2)
Step 3.3
Reorder 12n2 and -8n3.
-8n3+12n2-6n+1-7n(n2-2)
-8n3+12n2-6n+1-7n(n2-2)
 [x2  12  π  xdx ]