Enter a problem...
Algebra Examples
x2+y2-2ax=0
Step 1
Since x=rcos(θ), replace x with rcos(θ).
(rcos(θ))2+y2-2a(rcos(θ))=0
Step 2
Since y=rsin(θ), replace y with rsin(θ).
(rcos(θ))2+(rsin(θ))2-2a(rcos(θ))=0
Step 3
Step 3.1
Simplify the left side of the equation.
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Apply the product rule to rcos(θ).
r2cos2(θ)+(rsin(θ))2-2a(rcos(θ))=0
Step 3.1.1.2
Apply the product rule to rsin(θ).
r2cos2(θ)+r2sin2(θ)-2arcos(θ)=0
r2cos2(θ)+r2sin2(θ)-2arcos(θ)=0
Step 3.1.2
Simplify with factoring out.
Step 3.1.2.1
Factor r2 out of r2cos2(θ).
r2(cos2(θ))+r2sin2(θ)-2arcos(θ)=0
Step 3.1.2.2
Factor r2 out of r2sin2(θ).
r2(cos2(θ))+r2(sin2(θ))-2arcos(θ)=0
Step 3.1.2.3
Factor r2 out of r2(cos2(θ))+r2(sin2(θ)).
r2(cos2(θ)+sin2(θ))-2arcos(θ)=0
r2(cos2(θ)+sin2(θ))-2arcos(θ)=0
Step 3.1.3
Rearrange terms.
r2(sin2(θ)+cos2(θ))-2arcos(θ)=0
Step 3.1.4
Apply pythagorean identity.
r2⋅1-2arcos(θ)=0
Step 3.1.5
Multiply r2 by 1.
r2-2arcos(θ)=0
r2-2arcos(θ)=0
Step 3.2
Factor r out of r2-2arcos(θ).
Step 3.2.1
Factor r out of r2.
r⋅r-2arcos(θ)=0
Step 3.2.2
Factor r out of -2arcos(θ).
r⋅r+r(-2acos(θ))=0
Step 3.2.3
Factor r out of r⋅r+r(-2acos(θ)).
r(r-2acos(θ))=0
r(r-2acos(θ))=0
Step 3.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
r=0
r-2acos(θ)=0
Step 3.4
Set r equal to 0.
r=0
Step 3.5
Set r-2acos(θ) equal to 0 and solve for r.
Step 3.5.1
Set r-2acos(θ) equal to 0.
r-2acos(θ)=0
Step 3.5.2
Add 2acos(θ) to both sides of the equation.
r=2acos(θ)
r=2acos(θ)
Step 3.6
The final solution is all the values that make r(r-2acos(θ))=0 true.
r=0
r=2acos(θ)
r=0
r=2acos(θ)