Algebra Examples

Simplify 3ab(4a-5b)+4b^2(2a^2+1)
3ab(4a-5b)+4b2(2a2+1)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the distributive property.
3ab(4a)+3ab(-5b)+4b2(2a2+1)
Step 1.2
Multiply a by a by adding the exponents.
Tap for more steps...
Step 1.2.1
Move a.
3(aa)b4+3ab(-5b)+4b2(2a2+1)
Step 1.2.2
Multiply a by a.
3a2b4+3ab(-5b)+4b2(2a2+1)
3a2b4+3ab(-5b)+4b2(2a2+1)
Step 1.3
Multiply b by b by adding the exponents.
Tap for more steps...
Step 1.3.1
Move b.
3a2b4+3a(bb)-5+4b2(2a2+1)
Step 1.3.2
Multiply b by b.
3a2b4+3ab2-5+4b2(2a2+1)
3a2b4+3ab2-5+4b2(2a2+1)
Step 1.4
Simplify each term.
Tap for more steps...
Step 1.4.1
Multiply 4 by 3.
12a2b+3ab2-5+4b2(2a2+1)
Step 1.4.2
Multiply -5 by 3.
12a2b-15ab2+4b2(2a2+1)
12a2b-15ab2+4b2(2a2+1)
Step 1.5
Apply the distributive property.
12a2b-15ab2+4b2(2a2)+4b21
Step 1.6
Rewrite using the commutative property of multiplication.
12a2b-15ab2+42b2a2+4b21
Step 1.7
Multiply 4 by 1.
12a2b-15ab2+42b2a2+4b2
Step 1.8
Multiply 4 by 2.
12a2b-15ab2+8b2a2+4b2
12a2b-15ab2+8b2a2+4b2
Step 2
Simplify the expression.
Tap for more steps...
Step 2.1
Move b2.
12a2b-15ab2+8a2b2+4b2
Step 2.2
Move -15ab2.
12a2b+8a2b2-15ab2+4b2
Step 2.3
Reorder 12a2b and 8a2b2.
8a2b2+12a2b-15ab2+4b2
8a2b2+12a2b-15ab2+4b2
 [x2  12  π  xdx ]