Algebra Examples

Simplify ((4p^4r^4)/(3p^2r^2))^3
(4p4r43p2r2)3
Step 1
Cancel the common factor of p4 and p2.
Tap for more steps...
Step 1.1
Factor p2 out of 4p4r4.
(p2(4p2r4)3p2r2)3
Step 1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.1
Factor p2 out of 3p2r2.
(p2(4p2r4)p2(3r2))3
Step 1.2.2
Cancel the common factor.
(p2(4p2r4)p2(3r2))3
Step 1.2.3
Rewrite the expression.
(4p2r43r2)3
(4p2r43r2)3
(4p2r43r2)3
Step 2
Cancel the common factor of r4 and r2.
Tap for more steps...
Step 2.1
Factor r2 out of 4p2r4.
(r2(4p2r2)3r2)3
Step 2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1
Factor r2 out of 3r2.
(r2(4p2r2)r23)3
Step 2.2.2
Cancel the common factor.
(r2(4p2r2)r23)3
Step 2.2.3
Rewrite the expression.
(4p2r23)3
(4p2r23)3
(4p2r23)3
Step 3
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1
Apply the product rule to 4p2r23.
(4p2r2)333
Step 3.2
Apply the product rule to 4p2r2.
(4p2)3(r2)333
Step 3.3
Apply the product rule to 4p2.
43(p2)3(r2)333
43(p2)3(r2)333
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Raise 4 to the power of 3.
64(p2)3(r2)333
Step 4.2
Multiply the exponents in (p2)3.
Tap for more steps...
Step 4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
64p23(r2)333
Step 4.2.2
Multiply 2 by 3.
64p6(r2)333
64p6(r2)333
Step 4.3
Multiply the exponents in (r2)3.
Tap for more steps...
Step 4.3.1
Apply the power rule and multiply exponents, (am)n=amn.
64p6r2333
Step 4.3.2
Multiply 2 by 3.
64p6r633
64p6r633
64p6r633
Step 5
Raise 3 to the power of 3.
64p6r627
 [x2  12  π  xdx ]