Enter a problem...
Algebra Examples
x-y<6x−y<6 2x+y<62x+y<6
Step 1
Step 1.1
Write in y=mx+by=mx+b form.
Step 1.1.1
Solve for yy.
Step 1.1.1.1
Subtract xx from both sides of the inequality.
-y<6-x−y<6−x
Step 1.1.1.2
Divide each term in -y<6-x−y<6−x by -1−1 and simplify.
Step 1.1.1.2.1
Divide each term in -y<6-x−y<6−x by -1−1. When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
-y-1>6-1+-x-1−y−1>6−1+−x−1
Step 1.1.1.2.2
Simplify the left side.
Step 1.1.1.2.2.1
Dividing two negative values results in a positive value.
y1>6-1+-x-1y1>6−1+−x−1
Step 1.1.1.2.2.2
Divide yy by 11.
y>6-1+-x-1y>6−1+−x−1
y>6-1+-x-1y>6−1+−x−1
Step 1.1.1.2.3
Simplify the right side.
Step 1.1.1.2.3.1
Simplify each term.
Step 1.1.1.2.3.1.1
Divide 66 by -1−1.
y>-6+-x-1y>−6+−x−1
Step 1.1.1.2.3.1.2
Dividing two negative values results in a positive value.
y>-6+x1y>−6+x1
Step 1.1.1.2.3.1.3
Divide xx by 11.
y>-6+xy>−6+x
y>-6+xy>−6+x
y>-6+xy>−6+x
y>-6+xy>−6+x
y>-6+xy>−6+x
Step 1.1.2
Rearrange terms.
y>x-6y>x−6
y>x-6y>x−6
Step 1.2
Use the slope-intercept form to find the slope and y-intercept.
Step 1.2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2.2
Find the values of mm and bb using the form y=mx+by=mx+b.
m=1m=1
b=-6b=−6
Step 1.2.3
The slope of the line is the value of mm, and the y-intercept is the value of bb.
Slope: 11
y-intercept: (0,-6)(0,−6)
Slope: 11
y-intercept: (0,-6)(0,−6)
Step 1.3
Graph a dashed line, then shade the area above the boundary line since yy is greater than x-6x−6.
y>x-6y>x−6
y>x-6y>x−6
Step 2
Step 2.1
Write in y=mx+by=mx+b form.
Step 2.1.1
Subtract 2x2x from both sides of the inequality.
y<6-2xy<6−2x
Step 2.1.2
Rearrange terms.
y<-2x+6y<−2x+6
y<-2x+6y<−2x+6
Step 2.2
Use the slope-intercept form to find the slope and y-intercept.
Step 2.2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2.2
Find the values of mm and bb using the form y=mx+b.
m=-2
b=6
Step 2.2.3
The slope of the line is the value of m, and the y-intercept is the value of b.
Slope: -2
y-intercept: (0,6)
Slope: -2
y-intercept: (0,6)
Step 2.3
Graph a dashed line, then shade the area below the boundary line since y is less than -2x+6.
y<-2x+6
y<-2x+6
Step 3
Plot each graph on the same coordinate system.
x-y<6
2x+y<6
Step 4