Algebra Examples

Combine Like Terms 1/5pq-3/10pq^3-3/5pq^3-7/10pq+3pq
15pq-310pq3-35pq3-710pq+3pq15pq310pq335pq3710pq+3pq
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Multiply 15(pq).
Tap for more steps...
Step 1.1.1
Combine p and 15.
p5q-310(pq3)-35(pq3)-710(pq)+3pq
Step 1.1.2
Combine p5 and q.
pq5-310(pq3)-35(pq3)-710(pq)+3pq
pq5-310(pq3)-35(pq3)-710(pq)+3pq
Step 1.2
Multiply -310(pq3).
Tap for more steps...
Step 1.2.1
Combine p and 310.
pq5-p310q3-35(pq3)-710(pq)+3pq
Step 1.2.2
Combine q3 and p310.
pq5-q3(p3)10-35(pq3)-710(pq)+3pq
pq5-q3(p3)10-35(pq3)-710(pq)+3pq
Step 1.3
Move 3 to the left of q3p.
pq5-3(q3p)10-35(pq3)-710(pq)+3pq
Step 1.4
Multiply -35(pq3).
Tap for more steps...
Step 1.4.1
Combine p and 35.
pq5-3q3p10-p35q3-710(pq)+3pq
Step 1.4.2
Combine q3 and p35.
pq5-3q3p10-q3(p3)5-710(pq)+3pq
pq5-3q3p10-q3(p3)5-710(pq)+3pq
Step 1.5
Move 3 to the left of q3p.
pq5-3q3p10-3(q3p)5-710(pq)+3pq
Step 1.6
Multiply -710(pq).
Tap for more steps...
Step 1.6.1
Combine p and 710.
pq5-3q3p10-3q3p5-p710q+3pq
Step 1.6.2
Combine q and p710.
pq5-3q3p10-3q3p5-q(p7)10+3pq
pq5-3q3p10-3q3p5-q(p7)10+3pq
Step 1.7
Move 7 to the left of qp.
pq5-3q3p10-3q3p5-7qp10+3pq
pq5-3q3p10-3q3p5-7qp10+3pq
Step 2
To write pq5 as a fraction with a common denominator, multiply by 22.
pq522-3q3p10-3q3p5-7qp10+3pq
Step 3
Write each expression with a common denominator of 10, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.1
Multiply pq5 by 22.
pq252-3q3p10-3q3p5-7qp10+3pq
Step 3.2
Multiply 5 by 2.
pq210-3q3p10-3q3p5-7qp10+3pq
pq210-3q3p10-3q3p5-7qp10+3pq
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Combine the numerators over the common denominator.
pq2-3q3p10-3q3p5-7qp10+3pq
Step 4.2
Combine the numerators over the common denominator.
3pq+pq2-3q3p-7qp10+-3q3p5
3pq+pq2-3q3p-7qp10+-3q3p5
Step 5
Move 2 to the left of pq.
3pq+2pq-3q3p-7qp10+-3q3p5
Step 6
Subtract 7qp from 2pq.
Tap for more steps...
Step 6.1
Move q.
3pq+2pq-7pq-3q3p10+-3q3p5
Step 6.2
Subtract 7pq from 2pq.
3pq+-5pq-3q3p10+-3q3p5
3pq+-5pq-3q3p10+-3q3p5
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Factor pq out of -5pq-3q3p.
Tap for more steps...
Step 7.1.1
Factor pq out of -5pq.
3pq+pq(-5)-3q3p10+-3q3p5
Step 7.1.2
Factor pq out of -3q3p.
3pq+pq(-5)+pq(-3q2)10+-3q3p5
Step 7.1.3
Factor pq out of pq(-5)+pq(-3q2).
3pq+pq(-5-3q2)10+-3q3p5
3pq+pq(-5-3q2)10+-3q3p5
Step 7.2
Move the negative in front of the fraction.
3pq+pq(-5-3q2)10-3q3p5
3pq+pq(-5-3q2)10-3q3p5
Step 8
To write 3pq as a fraction with a common denominator, multiply by 1010.
3pq1010+pq(-5-3q2)10-3q3p5
Step 9
Simplify terms.
Tap for more steps...
Step 9.1
Combine 3pq and 1010.
3pq1010+pq(-5-3q2)10-3q3p5
Step 9.2
Combine the numerators over the common denominator.
3pq10+pq(-5-3q2)10-3q3p5
3pq10+pq(-5-3q2)10-3q3p5
Step 10
Simplify the numerator.
Tap for more steps...
Step 10.1
Factor pq out of 3pq10+pq(-5-3q2).
Tap for more steps...
Step 10.1.1
Factor pq out of 3pq10.
pq(310)+pq(-5-3q2)10-3q3p5
Step 10.1.2
Factor pq out of pq(310)+pq(-5-3q2).
pq(310-5-3q2)10-3q3p5
pq(310-5-3q2)10-3q3p5
Step 10.2
Multiply 3 by 10.
pq(30-5-3q2)10-3q3p5
Step 10.3
Subtract 5 from 30.
pq(25-3q2)10-3q3p5
pq(25-3q2)10-3q3p5
Step 11
To write -3q3p5 as a fraction with a common denominator, multiply by 22.
pq(25-3q2)10-3q3p522
Step 12
Write each expression with a common denominator of 10, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 12.1
Multiply 3q3p5 by 22.
pq(25-3q2)10-3q3p252
Step 12.2
Multiply 5 by 2.
pq(25-3q2)10-3q3p210
pq(25-3q2)10-3q3p210
Step 13
Combine the numerators over the common denominator.
pq(25-3q2)-3q3p210
Step 14
Simplify the numerator.
Tap for more steps...
Step 14.1
Factor pq out of pq(25-3q2)-3q3p2.
Tap for more steps...
Step 14.1.1
Factor pq out of -3q3p2.
pq(25-3q2)+pq(-3q22)10
Step 14.1.2
Factor pq out of pq(25-3q2)+pq(-3q22).
pq(25-3q2-3q22)10
pq(25-3q2-3q22)10
Step 14.2
Multiply 2 by -3.
pq(25-3q2-6q2)10
Step 14.3
Subtract 6q2 from -3q2.
pq(25-9q2)10
Step 14.4
Rewrite 25 as 52.
pq(52-9q2)10
Step 14.5
Rewrite 9q2 as (3q)2.
pq(52-(3q)2)10
Step 14.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=5 and b=3q.
pq((5+3q)(5-(3q)))10
Step 14.7
Multiply 3 by -1.
pq(5+3q)(5-3q)10
pq(5+3q)(5-3q)10
 [x2  12  π  xdx ]