Enter a problem...
Algebra Examples
15pq-310pq3-35pq3-710pq+3pq15pq−310pq3−35pq3−710pq+3pq
Step 1
Step 1.1
Multiply 15(pq).
Step 1.1.1
Combine p and 15.
p5q-310⋅(pq3)-35⋅(pq3)-710⋅(pq)+3pq
Step 1.1.2
Combine p5 and q.
pq5-310⋅(pq3)-35⋅(pq3)-710⋅(pq)+3pq
pq5-310⋅(pq3)-35⋅(pq3)-710⋅(pq)+3pq
Step 1.2
Multiply -310(pq3).
Step 1.2.1
Combine p and 310.
pq5-p⋅310q3-35⋅(pq3)-710⋅(pq)+3pq
Step 1.2.2
Combine q3 and p⋅310.
pq5-q3(p⋅3)10-35⋅(pq3)-710⋅(pq)+3pq
pq5-q3(p⋅3)10-35⋅(pq3)-710⋅(pq)+3pq
Step 1.3
Move 3 to the left of q3p.
pq5-3⋅(q3p)10-35⋅(pq3)-710⋅(pq)+3pq
Step 1.4
Multiply -35(pq3).
Step 1.4.1
Combine p and 35.
pq5-3q3p10-p⋅35q3-710⋅(pq)+3pq
Step 1.4.2
Combine q3 and p⋅35.
pq5-3q3p10-q3(p⋅3)5-710⋅(pq)+3pq
pq5-3q3p10-q3(p⋅3)5-710⋅(pq)+3pq
Step 1.5
Move 3 to the left of q3p.
pq5-3q3p10-3⋅(q3p)5-710⋅(pq)+3pq
Step 1.6
Multiply -710(pq).
Step 1.6.1
Combine p and 710.
pq5-3q3p10-3q3p5-p⋅710q+3pq
Step 1.6.2
Combine q and p⋅710.
pq5-3q3p10-3q3p5-q(p⋅7)10+3pq
pq5-3q3p10-3q3p5-q(p⋅7)10+3pq
Step 1.7
Move 7 to the left of qp.
pq5-3q3p10-3q3p5-7qp10+3pq
pq5-3q3p10-3q3p5-7qp10+3pq
Step 2
To write pq5 as a fraction with a common denominator, multiply by 22.
pq5⋅22-3q3p10-3q3p5-7qp10+3pq
Step 3
Step 3.1
Multiply pq5 by 22.
pq⋅25⋅2-3q3p10-3q3p5-7qp10+3pq
Step 3.2
Multiply 5 by 2.
pq⋅210-3q3p10-3q3p5-7qp10+3pq
pq⋅210-3q3p10-3q3p5-7qp10+3pq
Step 4
Step 4.1
Combine the numerators over the common denominator.
pq⋅2-3q3p10-3q3p5-7qp10+3pq
Step 4.2
Combine the numerators over the common denominator.
3pq+pq⋅2-3q3p-7qp10+-3q3p5
3pq+pq⋅2-3q3p-7qp10+-3q3p5
Step 5
Move 2 to the left of pq.
3pq+2pq-3q3p-7qp10+-3q3p5
Step 6
Step 6.1
Move q.
3pq+2pq-7pq-3q3p10+-3q3p5
Step 6.2
Subtract 7pq from 2pq.
3pq+-5pq-3q3p10+-3q3p5
3pq+-5pq-3q3p10+-3q3p5
Step 7
Step 7.1
Factor pq out of -5pq-3q3p.
Step 7.1.1
Factor pq out of -5pq.
3pq+pq(-5)-3q3p10+-3q3p5
Step 7.1.2
Factor pq out of -3q3p.
3pq+pq(-5)+pq(-3q2)10+-3q3p5
Step 7.1.3
Factor pq out of pq(-5)+pq(-3q2).
3pq+pq(-5-3q2)10+-3q3p5
3pq+pq(-5-3q2)10+-3q3p5
Step 7.2
Move the negative in front of the fraction.
3pq+pq(-5-3q2)10-3q3p5
3pq+pq(-5-3q2)10-3q3p5
Step 8
To write 3pq as a fraction with a common denominator, multiply by 1010.
3pq⋅1010+pq(-5-3q2)10-3q3p5
Step 9
Step 9.1
Combine 3pq and 1010.
3pq⋅1010+pq(-5-3q2)10-3q3p5
Step 9.2
Combine the numerators over the common denominator.
3pq⋅10+pq(-5-3q2)10-3q3p5
3pq⋅10+pq(-5-3q2)10-3q3p5
Step 10
Step 10.1
Factor pq out of 3pq⋅10+pq(-5-3q2).
Step 10.1.1
Factor pq out of 3pq⋅10.
pq(3⋅10)+pq(-5-3q2)10-3q3p5
Step 10.1.2
Factor pq out of pq(3⋅10)+pq(-5-3q2).
pq(3⋅10-5-3q2)10-3q3p5
pq(3⋅10-5-3q2)10-3q3p5
Step 10.2
Multiply 3 by 10.
pq(30-5-3q2)10-3q3p5
Step 10.3
Subtract 5 from 30.
pq(25-3q2)10-3q3p5
pq(25-3q2)10-3q3p5
Step 11
To write -3q3p5 as a fraction with a common denominator, multiply by 22.
pq(25-3q2)10-3q3p5⋅22
Step 12
Step 12.1
Multiply 3q3p5 by 22.
pq(25-3q2)10-3q3p⋅25⋅2
Step 12.2
Multiply 5 by 2.
pq(25-3q2)10-3q3p⋅210
pq(25-3q2)10-3q3p⋅210
Step 13
Combine the numerators over the common denominator.
pq(25-3q2)-3q3p⋅210
Step 14
Step 14.1
Factor pq out of pq(25-3q2)-3q3p⋅2.
Step 14.1.1
Factor pq out of -3q3p⋅2.
pq(25-3q2)+pq(-3q2⋅2)10
Step 14.1.2
Factor pq out of pq(25-3q2)+pq(-3q2⋅2).
pq(25-3q2-3q2⋅2)10
pq(25-3q2-3q2⋅2)10
Step 14.2
Multiply 2 by -3.
pq(25-3q2-6q2)10
Step 14.3
Subtract 6q2 from -3q2.
pq(25-9q2)10
Step 14.4
Rewrite 25 as 52.
pq(52-9q2)10
Step 14.5
Rewrite 9q2 as (3q)2.
pq(52-(3q)2)10
Step 14.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=5 and b=3q.
pq((5+3q)(5-(3q)))10
Step 14.7
Multiply 3 by -1.
pq(5+3q)(5-3q)10
pq(5+3q)(5-3q)10