Enter a problem...
Algebra Examples
log4(x2-x)=1+log4(5)
Step 1
Move all the terms containing a logarithm to the left side of the equation.
log4(x2-x)-log4(5)=1
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
log4(x2-x5)=1
Step 3
Step 3.1
Factor x out of x2.
log4(x⋅x-x5)=1
Step 3.2
Factor x out of -x.
log4(x⋅x+x⋅-15)=1
Step 3.3
Factor x out of x⋅x+x⋅-1.
log4(x(x-1)5)=1
log4(x(x-1)5)=1
Step 4
Rewrite log4(x(x-1)5)=1 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
41=x(x-1)5
Step 5
Step 5.1
Rewrite the equation as x(x-1)5=41.
x(x-1)5=4
Step 5.2
Multiply both sides of the equation by 5.
5x(x-1)5=5⋅41
Step 5.3
Simplify both sides of the equation.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Simplify 5x(x-1)5.
Step 5.3.1.1.1
Simplify terms.
Step 5.3.1.1.1.1
Cancel the common factor of 5.
Step 5.3.1.1.1.1.1
Cancel the common factor.
5x(x-1)5=5⋅41
Step 5.3.1.1.1.1.2
Rewrite the expression.
x(x-1)=5⋅41
x(x-1)=5⋅41
Step 5.3.1.1.1.2
Apply the distributive property.
x⋅x+x⋅-1=5⋅41
Step 5.3.1.1.1.3
Simplify the expression.
Step 5.3.1.1.1.3.1
Multiply x by x.
x2+x⋅-1=5⋅41
Step 5.3.1.1.1.3.2
Move -1 to the left of x.
x2-1⋅x=5⋅41
x2-1⋅x=5⋅41
x2-1⋅x=5⋅41
Step 5.3.1.1.2
Rewrite -1x as -x.
x2-x=5⋅41
x2-x=5⋅41
x2-x=5⋅41
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Simplify 5⋅41.
Step 5.3.2.1.1
Evaluate the exponent.
x2-x=5⋅4
Step 5.3.2.1.2
Multiply 5 by 4.
x2-x=20
x2-x=20
x2-x=20
x2-x=20
Step 5.4
Subtract 20 from both sides of the equation.
x2-x-20=0
Step 5.5
Factor x2-x-20 using the AC method.
Step 5.5.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -20 and whose sum is -1.
-5,4
Step 5.5.2
Write the factored form using these integers.
(x-5)(x+4)=0
(x-5)(x+4)=0
Step 5.6
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-5=0
x+4=0
Step 5.7
Set x-5 equal to 0 and solve for x.
Step 5.7.1
Set x-5 equal to 0.
x-5=0
Step 5.7.2
Add 5 to both sides of the equation.
x=5
x=5
Step 5.8
Set x+4 equal to 0 and solve for x.
Step 5.8.1
Set x+4 equal to 0.
x+4=0
Step 5.8.2
Subtract 4 from both sides of the equation.
x=-4
x=-4
Step 5.9
The final solution is all the values that make (x-5)(x+4)=0 true.
x=5,-4
x=5,-4