Enter a problem...
Algebra Examples
3(2x-3)<(-5)|7-10|3(2x−3)<(−5)|7−10|
Step 1
Step 1.1
Subtract 1010 from 77.
3(2x-3)<-5|-3|3(2x−3)<−5|−3|
Step 1.2
The absolute value is the distance between a number and zero. The distance between -3−3 and 00 is 33.
3(2x-3)<-5⋅33(2x−3)<−5⋅3
Step 1.3
Multiply -5−5 by 33.
3(2x-3)<-153(2x−3)<−15
3(2x-3)<-153(2x−3)<−15
Step 2
Step 2.1
Divide each term in 3(2x-3)<-153(2x−3)<−15 by 33.
3(2x-3)3<-1533(2x−3)3<−153
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 33.
Step 2.2.1.1
Cancel the common factor.
3(2x-3)3<-153
Step 2.2.1.2
Divide 2x-3 by 1.
2x-3<-153
2x-3<-153
2x-3<-153
Step 2.3
Simplify the right side.
Step 2.3.1
Divide -15 by 3.
2x-3<-5
2x-3<-5
2x-3<-5
Step 3
Step 3.1
Add 3 to both sides of the inequality.
2x<-5+3
Step 3.2
Add -5 and 3.
2x<-2
2x<-2
Step 4
Step 4.1
Divide each term in 2x<-2 by 2.
2x2<-22
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 2.
Step 4.2.1.1
Cancel the common factor.
2x2<-22
Step 4.2.1.2
Divide x by 1.
x<-22
x<-22
x<-22
Step 4.3
Simplify the right side.
Step 4.3.1
Divide -2 by 2.
x<-1
x<-1
x<-1
Step 5
The result can be shown in multiple forms.
Inequality Form:
x<-1
Interval Notation:
(-∞,-1)