Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use to rewrite as .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Factor out of .
Step 3.3.2.1.1.1
Factor out of .
Step 3.3.2.1.1.2
Factor out of .
Step 3.3.2.1.1.3
Factor out of .
Step 3.3.2.1.2
Use the power rule to distribute the exponent.
Step 3.3.2.1.2.1
Apply the product rule to .
Step 3.3.2.1.2.2
Apply the product rule to .
Step 3.3.2.1.3
Use the power rule to distribute the exponent.
Step 3.3.2.1.3.1
Apply the product rule to .
Step 3.3.2.1.3.2
Apply the product rule to .
Step 3.3.2.1.3.3
Apply the product rule to .
Step 3.3.2.1.4
Raise to the power of .
Step 3.3.2.1.5
Simplify the numerator.
Step 3.3.2.1.5.1
Multiply the exponents in .
Step 3.3.2.1.5.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.5.1.2
Cancel the common factor of .
Step 3.3.2.1.5.1.2.1
Cancel the common factor.
Step 3.3.2.1.5.1.2.2
Rewrite the expression.
Step 3.3.2.1.5.2
Evaluate the exponent.
Step 3.3.2.1.5.3
Multiply the exponents in .
Step 3.3.2.1.5.3.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.5.3.2
Cancel the common factor of .
Step 3.3.2.1.5.3.2.1
Cancel the common factor.
Step 3.3.2.1.5.3.2.2
Rewrite the expression.
Step 3.3.2.1.5.4
Simplify.
Step 3.3.2.1.6
Simplify the denominator.
Step 3.3.2.1.6.1
Multiply the exponents in .
Step 3.3.2.1.6.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.6.1.2
Cancel the common factor of .
Step 3.3.2.1.6.1.2.1
Cancel the common factor.
Step 3.3.2.1.6.1.2.2
Rewrite the expression.
Step 3.3.2.1.6.2
Evaluate the exponent.
Step 3.4
Solve for .
Step 3.4.1
Multiply both sides of the equation by .
Step 3.4.2
Simplify both sides of the equation.
Step 3.4.2.1
Simplify the left side.
Step 3.4.2.1.1
Simplify .
Step 3.4.2.1.1.1
Cancel the common factor of .
Step 3.4.2.1.1.1.1
Move the leading negative in into the numerator.
Step 3.4.2.1.1.1.2
Move the leading negative in into the numerator.
Step 3.4.2.1.1.1.3
Factor out of .
Step 3.4.2.1.1.1.4
Cancel the common factor.
Step 3.4.2.1.1.1.5
Rewrite the expression.
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Factor out of .
Step 3.4.2.1.1.2.2
Cancel the common factor.
Step 3.4.2.1.1.2.3
Rewrite the expression.
Step 3.4.2.1.1.3
Multiply.
Step 3.4.2.1.1.3.1
Multiply by .
Step 3.4.2.1.1.3.2
Multiply by .
Step 3.4.2.2
Simplify the right side.
Step 3.4.2.2.1
Simplify .
Step 3.4.2.2.1.1
Combine and .
Step 3.4.2.2.1.2
Move to the left of .
Step 3.4.3
Subtract from both sides of the equation.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Factor out of .
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.2
Factor out of .
Step 5.2.3.1.3
Factor out of .
Step 5.2.3.2
Simplify the numerator.
Step 5.2.3.2.1
Apply the product rule to .
Step 5.2.3.2.2
Raise to the power of .
Step 5.2.3.2.3
Rewrite as .
Step 5.2.3.2.4
Multiply by .
Step 5.2.3.2.5
Combine and simplify the denominator.
Step 5.2.3.2.5.1
Multiply by .
Step 5.2.3.2.5.2
Raise to the power of .
Step 5.2.3.2.5.3
Use the power rule to combine exponents.
Step 5.2.3.2.5.4
Add and .
Step 5.2.3.2.5.5
Rewrite as .
Step 5.2.3.2.5.5.1
Use to rewrite as .
Step 5.2.3.2.5.5.2
Apply the power rule and multiply exponents, .
Step 5.2.3.2.5.5.3
Combine and .
Step 5.2.3.2.5.5.4
Cancel the common factor of .
Step 5.2.3.2.5.5.4.1
Cancel the common factor.
Step 5.2.3.2.5.5.4.2
Rewrite the expression.
Step 5.2.3.2.5.5.5
Evaluate the exponent.
Step 5.2.3.2.6
Simplify the numerator.
Step 5.2.3.2.6.1
Rewrite as .
Step 5.2.3.2.6.2
Raise to the power of .
Step 5.2.3.2.7
Simplify the numerator.
Step 5.2.3.2.7.1
Combine using the product rule for radicals.
Step 5.2.3.2.7.2
Multiply by .
Step 5.2.3.2.8
Apply the product rule to .
Step 5.2.3.2.9
Simplify the numerator.
Step 5.2.3.2.9.1
Rewrite as .
Step 5.2.3.2.9.1.1
Use to rewrite as .
Step 5.2.3.2.9.1.2
Apply the power rule and multiply exponents, .
Step 5.2.3.2.9.1.3
Combine and .
Step 5.2.3.2.9.1.4
Cancel the common factor of .
Step 5.2.3.2.9.1.4.1
Cancel the common factor.
Step 5.2.3.2.9.1.4.2
Rewrite the expression.
Step 5.2.3.2.9.1.5
Simplify.
Step 5.2.3.2.9.2
Apply the distributive property.
Step 5.2.3.2.9.3
Multiply by .
Step 5.2.3.2.9.4
Factor out of .
Step 5.2.3.2.9.4.1
Factor out of .
Step 5.2.3.2.9.4.2
Factor out of .
Step 5.2.3.2.9.4.3
Factor out of .
Step 5.2.3.2.10
Raise to the power of .
Step 5.2.3.2.11
Cancel the common factor of and .
Step 5.2.3.2.11.1
Factor out of .
Step 5.2.3.2.11.2
Cancel the common factors.
Step 5.2.3.2.11.2.1
Factor out of .
Step 5.2.3.2.11.2.2
Cancel the common factor.
Step 5.2.3.2.11.2.3
Rewrite the expression.
Step 5.2.3.2.12
Combine exponents.
Step 5.2.3.2.12.1
Factor out negative.
Step 5.2.3.2.12.2
Combine and .
Step 5.2.3.2.12.3
Multiply by .
Step 5.2.3.2.13
Reduce the expression by cancelling the common factors.
Step 5.2.3.2.13.1
Reduce the expression by cancelling the common factors.
Step 5.2.3.2.13.1.1
Factor out of .
Step 5.2.3.2.13.1.2
Factor out of .
Step 5.2.3.2.13.1.3
Cancel the common factor.
Step 5.2.3.2.13.1.4
Rewrite the expression.
Step 5.2.3.2.13.2
Divide by .
Step 5.2.3.3
Multiply by .
Step 5.2.3.4
Cancel the common factor of and .
Step 5.2.3.4.1
Factor out of .
Step 5.2.3.4.2
Cancel the common factors.
Step 5.2.3.4.2.1
Factor out of .
Step 5.2.3.4.2.2
Cancel the common factor.
Step 5.2.3.4.2.3
Rewrite the expression.
Step 5.2.3.4.2.4
Divide by .
Step 5.2.3.5
Apply the distributive property.
Step 5.2.3.6
Multiply by .
Step 5.2.3.7
Apply the distributive property.
Step 5.2.3.8
Multiply .
Step 5.2.3.8.1
Multiply by .
Step 5.2.3.8.2
Multiply by .
Step 5.2.3.9
Multiply by .
Step 5.2.4
Combine the opposite terms in .
Step 5.2.4.1
Subtract from .
Step 5.2.4.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Factor out of .
Step 5.3.3.1
Factor out of .
Step 5.3.3.2
Factor out of .
Step 5.3.4
Add and .
Step 5.3.5
Add and .
Step 5.3.6
Combine exponents.
Step 5.3.6.1
Factor out negative.
Step 5.3.6.2
Combine and .
Step 5.3.6.3
Multiply by .
Step 5.3.7
Cancel the common factor of and .
Step 5.3.7.1
Factor out of .
Step 5.3.7.2
Cancel the common factors.
Step 5.3.7.2.1
Factor out of .
Step 5.3.7.2.2
Cancel the common factor.
Step 5.3.7.2.3
Rewrite the expression.
Step 5.3.7.2.4
Divide by .
Step 5.3.8
Cancel the common factor of .
Step 5.3.8.1
Cancel the common factor.
Step 5.3.8.2
Divide by .
Step 5.3.9
Rewrite as .
Step 5.3.10
Pull terms out from under the radical, assuming real numbers.
Step 5.4
Since and , then is the inverse of .