Enter a problem...
Algebra Examples
f(x)=-3√2x+43f(x)=−3√2x+43
Step 1
Write f(x)=-3√2x+43f(x)=−3√2x+43 as an equation.
y=-3√2x+43y=−3√2x+43
Step 2
Interchange the variables.
x=-3√2y+43x=−3√2y+43
Step 3
Step 3.1
Rewrite the equation as -3√2y+43=x.
-3√2y+43=x
Step 3.2
To remove the radical on the left side of the equation, cube both sides of the equation.
(-3√2y+43)3=x3
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use n√ax=axn to rewrite 3√2y+43 as (2y+43)13.
(-(2y+43)13)3=x3
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify (-(2y+43)13)3.
Step 3.3.2.1.1
Factor 2 out of 2y+4.
Step 3.3.2.1.1.1
Factor 2 out of 2y.
(-(2(y)+43)13)3=x3
Step 3.3.2.1.1.2
Factor 2 out of 4.
(-(2y+2⋅23)13)3=x3
Step 3.3.2.1.1.3
Factor 2 out of 2y+2⋅2.
(-(2(y+2)3)13)3=x3
(-(2(y+2)3)13)3=x3
Step 3.3.2.1.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.2.1.2.1
Apply the product rule to 2(y+2)3.
(-(2(y+2))13313)3=x3
Step 3.3.2.1.2.2
Apply the product rule to 2(y+2).
(-213(y+2)13313)3=x3
(-213(y+2)13313)3=x3
Step 3.3.2.1.3
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.2.1.3.1
Apply the product rule to -213(y+2)13313.
(-1)3(213(y+2)13313)3=x3
Step 3.3.2.1.3.2
Apply the product rule to 213(y+2)13313.
(-1)3(213(y+2)13)3(313)3=x3
Step 3.3.2.1.3.3
Apply the product rule to 213(y+2)13.
(-1)3(213)3((y+2)13)3(313)3=x3
(-1)3(213)3((y+2)13)3(313)3=x3
Step 3.3.2.1.4
Raise -1 to the power of 3.
-(213)3((y+2)13)3(313)3=x3
Step 3.3.2.1.5
Simplify the numerator.
Step 3.3.2.1.5.1
Multiply the exponents in (213)3.
Step 3.3.2.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
-213⋅3((y+2)13)3(313)3=x3
Step 3.3.2.1.5.1.2
Cancel the common factor of 3.
Step 3.3.2.1.5.1.2.1
Cancel the common factor.
-213⋅3((y+2)13)3(313)3=x3
Step 3.3.2.1.5.1.2.2
Rewrite the expression.
-21((y+2)13)3(313)3=x3
-21((y+2)13)3(313)3=x3
-21((y+2)13)3(313)3=x3
Step 3.3.2.1.5.2
Evaluate the exponent.
-2((y+2)13)3(313)3=x3
Step 3.3.2.1.5.3
Multiply the exponents in ((y+2)13)3.
Step 3.3.2.1.5.3.1
Apply the power rule and multiply exponents, (am)n=amn.
-2(y+2)13⋅3(313)3=x3
Step 3.3.2.1.5.3.2
Cancel the common factor of 3.
Step 3.3.2.1.5.3.2.1
Cancel the common factor.
-2(y+2)13⋅3(313)3=x3
Step 3.3.2.1.5.3.2.2
Rewrite the expression.
-2(y+2)1(313)3=x3
-2(y+2)1(313)3=x3
-2(y+2)1(313)3=x3
Step 3.3.2.1.5.4
Simplify.
-2(y+2)(313)3=x3
-2(y+2)(313)3=x3
Step 3.3.2.1.6
Simplify the denominator.
Step 3.3.2.1.6.1
Multiply the exponents in (313)3.
Step 3.3.2.1.6.1.1
Apply the power rule and multiply exponents, (am)n=amn.
-2(y+2)313⋅3=x3
Step 3.3.2.1.6.1.2
Cancel the common factor of 3.
Step 3.3.2.1.6.1.2.1
Cancel the common factor.
-2(y+2)313⋅3=x3
Step 3.3.2.1.6.1.2.2
Rewrite the expression.
-2(y+2)31=x3
-2(y+2)31=x3
-2(y+2)31=x3
Step 3.3.2.1.6.2
Evaluate the exponent.
-2(y+2)3=x3
-2(y+2)3=x3
-2(y+2)3=x3
-2(y+2)3=x3
-2(y+2)3=x3
Step 3.4
Solve for y.
Step 3.4.1
Multiply both sides of the equation by -32.
-32(-2(y+2)3)=-32x3
Step 3.4.2
Simplify both sides of the equation.
Step 3.4.2.1
Simplify the left side.
Step 3.4.2.1.1
Simplify -32(-2(y+2)3).
Step 3.4.2.1.1.1
Cancel the common factor of 3.
Step 3.4.2.1.1.1.1
Move the leading negative in -32 into the numerator.
-32(-2(y+2)3)=-32x3
Step 3.4.2.1.1.1.2
Move the leading negative in -2(y+2)3 into the numerator.
-32⋅-2(y+2)3=-32x3
Step 3.4.2.1.1.1.3
Factor 3 out of -3.
3(-1)2⋅-2(y+2)3=-32x3
Step 3.4.2.1.1.1.4
Cancel the common factor.
3⋅-12⋅-2(y+2)3=-32x3
Step 3.4.2.1.1.1.5
Rewrite the expression.
-12(-2(y+2))=-32x3
-12(-2(y+2))=-32x3
Step 3.4.2.1.1.2
Cancel the common factor of 2.
Step 3.4.2.1.1.2.1
Factor 2 out of -2(y+2).
-12(2(-(y+2)))=-32x3
Step 3.4.2.1.1.2.2
Cancel the common factor.
-12(2(-(y+2)))=-32x3
Step 3.4.2.1.1.2.3
Rewrite the expression.
--(y+2)=-32x3
--(y+2)=-32x3
Step 3.4.2.1.1.3
Multiply.
Step 3.4.2.1.1.3.1
Multiply -1 by -1.
1(y+2)=-32x3
Step 3.4.2.1.1.3.2
Multiply y+2 by 1.
y+2=-32x3
y+2=-32x3
y+2=-32x3
y+2=-32x3
Step 3.4.2.2
Simplify the right side.
Step 3.4.2.2.1
Simplify -32x3.
Step 3.4.2.2.1.1
Combine x3 and 32.
y+2=-x3⋅32
Step 3.4.2.2.1.2
Move 3 to the left of x3.
y+2=-3x32
y+2=-3x32
y+2=-3x32
y+2=-3x32
Step 3.4.3
Subtract 2 from both sides of the equation.
y=-3x32-2
y=-3x32-2
y=-3x32-2
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=-3x32-2
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(-3√2x+43) by substituting in the value of f into f-1.
f-1(-3√2x+43)=-3(-3√2x+43)32-2
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Factor 2 out of 2x+4.
Step 5.2.3.1.1
Factor 2 out of 2x.
f-1(-3√2x+43)=-3(-3√2(x)+43)32-2
Step 5.2.3.1.2
Factor 2 out of 4.
f-1(-3√2x+43)=-3(-3√2x+2⋅23)32-2
Step 5.2.3.1.3
Factor 2 out of 2x+2⋅2.
f-1(-3√2x+43)=-3(-3√2(x+2)3)32-2
f-1(-3√2x+43)=-3(-3√2(x+2)3)32-2
Step 5.2.3.2
Simplify the numerator.
Step 5.2.3.2.1
Apply the product rule to -3√2(x+2)3.
f-1(-3√2x+43)=-3(-1)33√2(x+2)332-2
Step 5.2.3.2.2
Raise -1 to the power of 3.
f-1(-3√2x+43)=-3⋅(-13√2(x+2)33)2-2
Step 5.2.3.2.3
Rewrite 3√2(x+2)3 as 3√2(x+2)3√3.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√3)3)2-2
Step 5.2.3.2.4
Multiply 3√2(x+2)3√3 by 3√323√32.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√3⋅3√323√32)3)2-2
Step 5.2.3.2.5
Combine and simplify the denominator.
Step 5.2.3.2.5.1
Multiply 3√2(x+2)3√3 by 3√323√32.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323√33√32)3)2-2
Step 5.2.3.2.5.2
Raise 3√3 to the power of 1.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323√33√32)3)2-2
Step 5.2.3.2.5.3
Use the power rule aman=am+n to combine exponents.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323√31+2)3)2-2
Step 5.2.3.2.5.4
Add 1 and 2.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323√33)3)2-2
Step 5.2.3.2.5.5
Rewrite 3√33 as 3.
Step 5.2.3.2.5.5.1
Use n√ax=axn to rewrite 3√3 as 313.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√32(313)3)3)2-2
Step 5.2.3.2.5.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√32313⋅3)3)2-2
Step 5.2.3.2.5.5.3
Combine 13 and 3.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√32333)3)2-2
Step 5.2.3.2.5.5.4
Cancel the common factor of 3.
Step 5.2.3.2.5.5.4.1
Cancel the common factor.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√32333)3)2-2
Step 5.2.3.2.5.5.4.2
Rewrite the expression.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
Step 5.2.3.2.5.5.5
Evaluate the exponent.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
Step 5.2.3.2.6
Simplify the numerator.
Step 5.2.3.2.6.1
Rewrite 3√32 as 3√32.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√323)3)2-2
Step 5.2.3.2.6.2
Raise 3 to the power of 2.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√93)3)2-2
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)3√93)3)2-2
Step 5.2.3.2.7
Simplify the numerator.
Step 5.2.3.2.7.1
Combine using the product rule for radicals.
f-1(-3√2x+43)=-3⋅(-1(3√2(x+2)⋅93)3)2-2
Step 5.2.3.2.7.2
Multiply 9 by 2.
f-1(-3√2x+43)=-3⋅(-1(3√18(x+2)3)3)2-2
f-1(-3√2x+43)=-3⋅(-1(3√18(x+2)3)3)2-2
Step 5.2.3.2.8
Apply the product rule to 3√18(x+2)3.
f-1(-3√2x+43)=-3⋅(-13√18(x+2)333)2-2
Step 5.2.3.2.9
Simplify the numerator.
Step 5.2.3.2.9.1
Rewrite 3√18(x+2)3 as 18(x+2).
Step 5.2.3.2.9.1.1
Use n√ax=axn to rewrite 3√18(x+2) as (18(x+2))13.
f-1(-3√2x+43)=-3⋅(-1((18(x+2))13)333)2-2
Step 5.2.3.2.9.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(-3√2x+43)=-3⋅(-1(18(x+2))13⋅333)2-2
Step 5.2.3.2.9.1.3
Combine 13 and 3.
f-1(-3√2x+43)=-3⋅(-1(18(x+2))3333)2-2
Step 5.2.3.2.9.1.4
Cancel the common factor of 3.
Step 5.2.3.2.9.1.4.1
Cancel the common factor.
f-1(-3√2x+43)=-3⋅(-1(18(x+2))3333)2-2
Step 5.2.3.2.9.1.4.2
Rewrite the expression.
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
Step 5.2.3.2.9.1.5
Simplify.
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
Step 5.2.3.2.9.2
Apply the distributive property.
f-1(-3√2x+43)=-3⋅(-118x+18⋅233)2-2
Step 5.2.3.2.9.3
Multiply 18 by 2.
f-1(-3√2x+43)=-3⋅(-118x+3633)2-2
Step 5.2.3.2.9.4
Factor 18 out of 18x+36.
Step 5.2.3.2.9.4.1
Factor 18 out of 18x.
f-1(-3√2x+43)=-3⋅(-118(x)+3633)2-2
Step 5.2.3.2.9.4.2
Factor 18 out of 36.
f-1(-3√2x+43)=-3⋅(-118x+18⋅233)2-2
Step 5.2.3.2.9.4.3
Factor 18 out of 18x+18⋅2.
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
f-1(-3√2x+43)=-3⋅(-118(x+2)33)2-2
Step 5.2.3.2.10
Raise 3 to the power of 3.
f-1(-3√2x+43)=-3⋅(-118(x+2)27)2-2
Step 5.2.3.2.11
Cancel the common factor of 18 and 27.
Step 5.2.3.2.11.1
Factor 9 out of 18(x+2).
f-1(-3√2x+43)=-3⋅(-19(2(x+2))27)2-2
Step 5.2.3.2.11.2
Cancel the common factors.
Step 5.2.3.2.11.2.1
Factor 9 out of 27.
f-1(-3√2x+43)=-3⋅(-19(2(x+2))9(3))2-2
Step 5.2.3.2.11.2.2
Cancel the common factor.
f-1(-3√2x+43)=-3⋅(-19(2(x+2))9⋅3)2-2
Step 5.2.3.2.11.2.3
Rewrite the expression.
f-1(-3√2x+43)=-3⋅(-12(x+2)3)2-2
f-1(-3√2x+43)=-3⋅(-12(x+2)3)2-2
f-1(-3√2x+43)=-3⋅(-12(x+2)3)2-2
Step 5.2.3.2.12
Combine exponents.
Step 5.2.3.2.12.1
Factor out negative.
f-1(-3√2x+43)=--(3(2(x+2)3))2-2
Step 5.2.3.2.12.2
Combine 3 and 2(x+2)3.
f-1(-3√2x+43)=--3(2(x+2))32-2
Step 5.2.3.2.12.3
Multiply 2 by 3.
f-1(-3√2x+43)=--6(x+2)32-2
f-1(-3√2x+43)=--6(x+2)32-2
Step 5.2.3.2.13
Reduce the expression by cancelling the common factors.
Step 5.2.3.2.13.1
Reduce the expression 6(x+2)3 by cancelling the common factors.
Step 5.2.3.2.13.1.1
Factor 3 out of 6(x+2).
f-1(-3√2x+43)=--3(2(x+2))32-2
Step 5.2.3.2.13.1.2
Factor 3 out of 3.
f-1(-3√2x+43)=--3(2(x+2))3(1)2-2
Step 5.2.3.2.13.1.3
Cancel the common factor.
f-1(-3√2x+43)=--3(2(x+2))3⋅12-2
Step 5.2.3.2.13.1.4
Rewrite the expression.
f-1(-3√2x+43)=--2(x+2)12-2
f-1(-3√2x+43)=--2(x+2)12-2
Step 5.2.3.2.13.2
Divide 2(x+2) by 1.
f-1(-3√2x+43)=--(2(x+2))2-2
f-1(-3√2x+43)=--(2(x+2))2-2
f-1(-3√2x+43)=--(2(x+2))2-2
Step 5.2.3.3
Multiply -1 by 2.
f-1(-3√2x+43)=--2(x+2)2-2
Step 5.2.3.4
Cancel the common factor of -2 and 2.
Step 5.2.3.4.1
Factor 2 out of -2(x+2).
f-1(-3√2x+43)=-2(-(x+2))2-2
Step 5.2.3.4.2
Cancel the common factors.
Step 5.2.3.4.2.1
Factor 2 out of 2.
f-1(-3√2x+43)=-2(-(x+2))2(1)-2
Step 5.2.3.4.2.2
Cancel the common factor.
f-1(-3√2x+43)=-2(-(x+2))2⋅1-2
Step 5.2.3.4.2.3
Rewrite the expression.
f-1(-3√2x+43)=--(x+2)1-2
Step 5.2.3.4.2.4
Divide -(x+2) by 1.
f-1(-3√2x+43)=(x+2)-2
f-1(-3√2x+43)=(x+2)-2
f-1(-3√2x+43)=(x+2)-2
Step 5.2.3.5
Apply the distributive property.
f-1(-3√2x+43)=-(-x-1⋅2)-2
Step 5.2.3.6
Multiply -1 by 2.
f-1(-3√2x+43)=-(-x-2)-2
Step 5.2.3.7
Apply the distributive property.
f-1(-3√2x+43)=x+2-2
Step 5.2.3.8
Multiply --x.
Step 5.2.3.8.1
Multiply -1 by -1.
f-1(-3√2x+43)=1x+2-2
Step 5.2.3.8.2
Multiply x by 1.
f-1(-3√2x+43)=x+2-2
f-1(-3√2x+43)=x+2-2
Step 5.2.3.9
Multiply -1 by -2.
f-1(-3√2x+43)=x+2-2
f-1(-3√2x+43)=x+2-2
Step 5.2.4
Combine the opposite terms in x+2-2.
Step 5.2.4.1
Subtract 2 from 2.
f-1(-3√2x+43)=x+0
Step 5.2.4.2
Add x and 0.
f-1(-3√2x+43)=x
f-1(-3√2x+43)=x
f-1(-3√2x+43)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(-3x32-2) by substituting in the value of f-1 into f.
f(-3x32-2)=-3√2(-3x32-2)+43
Step 5.3.3
Factor 2 out of 2(-3x32-2)+4.
Step 5.3.3.1
Factor 2 out of 4.
f(-3x32-2)=-3√2(-3x32-2)+2⋅23
Step 5.3.3.2
Factor 2 out of 2(-3x32-2)+2⋅2.
f(-3x32-2)=-3√2(-3x32-2+2)3
f(-3x32-2)=-3√2(-3x32-2+2)3
Step 5.3.4
Add -2 and 2.
f(-3x32-2)=-3√2(-3x32+0)3
Step 5.3.5
Add -3x32 and 0.
f(-3x32-2)=-3√2⋅(-13x32)3
Step 5.3.6
Combine exponents.
Step 5.3.6.1
Factor out negative.
f(-3x32-2)=-3√-(2(3x32))3
Step 5.3.6.2
Combine 2 and 3x32.
f(-3x32-2)=-3√-2(3x3)23
Step 5.3.6.3
Multiply 3 by 2.
f(-3x32-2)=-3√-6x323
f(-3x32-2)=-3√-6x323
Step 5.3.7
Cancel the common factor of 6 and 2.
Step 5.3.7.1
Factor 2 out of 6x3.
f(-3x32-2)=-3√-2(3x3)23
Step 5.3.7.2
Cancel the common factors.
Step 5.3.7.2.1
Factor 2 out of 2.
f(-3x32-2)=-3√-2(3x3)2(1)3
Step 5.3.7.2.2
Cancel the common factor.
f(-3x32-2)=-3√-2(3x3)2⋅13
Step 5.3.7.2.3
Rewrite the expression.
f(-3x32-2)=-3√-3x313
Step 5.3.7.2.4
Divide 3x3 by 1.
f(-3x32-2)=-3√-(3x3)3
f(-3x32-2)=-3√-(3x3)3
f(-3x32-2)=-3√-(3x3)3
Step 5.3.8
Cancel the common factor of 3.
Step 5.3.8.1
Cancel the common factor.
f(-3x32-2)=-3√-(3x3)3
Step 5.3.8.2
Divide -(x3) by 1.
f(-3x32-2)=-3√-(x3)
f(-3x32-2)=-3√-(x3)
Step 5.3.9
Rewrite -x3 as (-x)3.
f(-3x32-2)=-3√(-x)3
Step 5.3.10
Pull terms out from under the radical, assuming real numbers.
f(-3x32-2)=x
f(-3x32-2)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=-3x32-2 is the inverse of f(x)=-3√2x+43.
f-1(x)=-3x32-2
f-1(x)=-3x32-2