Enter a problem...
Algebra Examples
f(x)=-(43)2(x-3)+1f(x)=−(43)2(x−3)+1
Step 1
The parent function is the simplest form of the type of function given.
g(x)=(43)xg(x)=(43)x
Step 2
The transformation from the first equation to the second one can be found by finding aa, hh, and kk for each equation.
y=abx-h+ky=abx−h+k
Step 3
Step 3.1
Simplify terms.
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Apply the distributive property.
f(x)=-(43)2x+2⋅-3+1f(x)=−(43)2x+2⋅−3+1
Step 3.1.1.2
Multiply 22 by -3−3.
f(x)=-(43)2x-6+1f(x)=−(43)2x−6+1
Step 3.1.1.3
Apply the product rule to 4343.
f(x)=-42x-632x-6+1f(x)=−42x−632x−6+1
f(x)=-42x-632x-6+1f(x)=−42x−632x−6+1
Step 3.1.2
Combine into one fraction.
Step 3.1.2.1
Write 11 as a fraction with a common denominator.
f(x)=-42x-632x-6+32x-632x-6f(x)=−42x−632x−6+32x−632x−6
Step 3.1.2.2
Combine the numerators over the common denominator.
f(x)=-42x-6+32x-632x-6f(x)=−42x−6+32x−632x−6
f(x)=-42x-6+32x-632x-6
f(x)=-42x-6+32x-632x-6
Step 3.2
Simplify the numerator.
Step 3.2.1
Rewrite 32x-6 as (3x-3)2.
f(x)=-42x-6+(3x-3)232x-6
Step 3.2.2
Rewrite 42x-6 as (4x-3)2.
f(x)=-(4x-3)2+(3x-3)232x-6
Step 3.2.3
Reorder -(4x-3)2 and (3x-3)2.
f(x)=(3x-3)2-(4x-3)232x-6
Step 3.2.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=3x-3 and b=4x-3.
f(x)=(3x-3+4x-3)(3x-3-4x-3)32x-6
f(x)=(3x-3+4x-3)(3x-3-4x-3)32x-6
f(x)=(3x-3+4x-3)(3x-3-4x-3)32x-6
Step 4
Find a, h, and k for g(x)=(43)x.
a=1
h=0
k=0
Step 5
Find a, h, and k for f(x)=-(43)2(x-3)+1.
a=-1
h=3
k=1
Step 6
The horizontal shift depends on the value of h. The horizontal shift is described as:
f(x)=f(x+h) - The graph is shifted to the left h units.
f(x)=f(x-h) - The graph is shifted to the right h units.
Horizontal Shift: Right 3 Units
Step 7
The vertical shift depends on the value of k. The vertical shift is described as:
f(x)=f(x)+k - The graph is shifted up k units.
f(x)=f(x)-k - The graph is shifted down k units.
Vertical Shift: Up 1 Units
Step 8
The sign of a describes the reflection across the x-axis. -a means the graph is reflected across the x-axis.
Reflection about the x-axis: Reflected
Step 9
The value of a describes the vertical stretch or compression of the graph.
a>1 is a vertical stretch (makes it narrower)
0<a<1 is a vertical compression (makes it wider)
Vertical Compression or Stretch: None
Step 10
To find the transformation, compare the two functions and check to see if there is a horizontal or vertical shift, reflection about the x-axis, and if there is a vertical stretch.
Parent Function: g(x)=(43)x
Horizontal Shift: Right 3 Units
Vertical Shift: Up 1 Units
Reflection about the x-axis: Reflected
Vertical Compression or Stretch: None
Step 11