Algebra Examples

Simplify ( square root of x+ square root of 2)/(( square root of x)^3+8)*((x-2 square root of x+4)/( square root of x-2))
Step 1
Simplify the denominator.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Rewrite as .
Tap for more steps...
Step 1.3.1.1
Use to rewrite as .
Step 1.3.1.2
Apply the power rule and multiply exponents, .
Step 1.3.1.3
Combine and .
Step 1.3.1.4
Cancel the common factor of .
Tap for more steps...
Step 1.3.1.4.1
Cancel the common factor.
Step 1.3.1.4.2
Rewrite the expression.
Step 1.3.1.5
Simplify.
Step 1.3.2
Multiply by .
Step 1.3.3
Raise to the power of .
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.1
Factor out of .
Step 2.1.2
Cancel the common factor.
Step 2.1.3
Rewrite the expression.
Step 2.2
Multiply by .
Step 3
Expand using the FOIL Method.
Tap for more steps...
Step 3.1
Apply the distributive property.
Step 3.2
Apply the distributive property.
Step 3.3
Apply the distributive property.
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Combine the opposite terms in .
Tap for more steps...
Step 4.1.1
Reorder the factors in the terms and .
Step 4.1.2
Add and .
Step 4.1.3
Add and .
Step 4.2
Simplify each term.
Tap for more steps...
Step 4.2.1
Multiply .
Tap for more steps...
Step 4.2.1.1
Raise to the power of .
Step 4.2.1.2
Raise to the power of .
Step 4.2.1.3
Use the power rule to combine exponents.
Step 4.2.1.4
Add and .
Step 4.2.2
Rewrite as .
Tap for more steps...
Step 4.2.2.1
Use to rewrite as .
Step 4.2.2.2
Apply the power rule and multiply exponents, .
Step 4.2.2.3
Combine and .
Step 4.2.2.4
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.4.1
Cancel the common factor.
Step 4.2.2.4.2
Rewrite the expression.
Step 4.2.2.5
Simplify.
Step 4.2.3
Multiply by .