Algebra Examples

Solve for x ((3^x)^(1/2))/(3^(1/2))=3
(3x)12312=3(3x)12312=3
Step 1
Multiply both sides of the equation by 312312.
312(3x)12312=3123312(3x)12312=3123
Step 2
Simplify both sides of the equation.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify 312(3x)12312312(3x)12312.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor of 312312.
Tap for more steps...
Step 2.1.1.1.1
Cancel the common factor.
312(3x)12312=3123
Step 2.1.1.1.2
Rewrite the expression.
(3x)12=3123
(3x)12=3123
Step 2.1.1.2
Multiply the exponents in (3x)12.
Tap for more steps...
Step 2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
3x12=3123
Step 2.1.1.2.2
Combine x and 12.
3x2=3123
3x2=3123
3x2=3123
3x2=3123
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Multiply 312 by 3 by adding the exponents.
Tap for more steps...
Step 2.2.1.1
Multiply 312 by 3.
Tap for more steps...
Step 2.2.1.1.1
Raise 3 to the power of 1.
3x2=31231
Step 2.2.1.1.2
Use the power rule aman=am+n to combine exponents.
3x2=312+1
3x2=312+1
Step 2.2.1.2
Write 1 as a fraction with a common denominator.
3x2=312+22
Step 2.2.1.3
Combine the numerators over the common denominator.
3x2=31+22
Step 2.2.1.4
Add 1 and 2.
3x2=332
3x2=332
3x2=332
3x2=332
Step 3
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
x2=32
Step 4
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
x=3
 [x2  12  π  xdx ]