Enter a problem...
Algebra Examples
(3x)12312=3(3x)12312=3
Step 1
Multiply both sides of the equation by 312312.
312(3x)12312=312⋅3312(3x)12312=312⋅3
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify 312(3x)12312312(3x)12312.
Step 2.1.1.1
Cancel the common factor of 312312.
Step 2.1.1.1.1
Cancel the common factor.
312(3x)12312=312⋅3
Step 2.1.1.1.2
Rewrite the expression.
(3x)12=312⋅3
(3x)12=312⋅3
Step 2.1.1.2
Multiply the exponents in (3x)12.
Step 2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
3x12=312⋅3
Step 2.1.1.2.2
Combine x and 12.
3x2=312⋅3
3x2=312⋅3
3x2=312⋅3
3x2=312⋅3
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply 312 by 3 by adding the exponents.
Step 2.2.1.1
Multiply 312 by 3.
Step 2.2.1.1.1
Raise 3 to the power of 1.
3x2=312⋅31
Step 2.2.1.1.2
Use the power rule aman=am+n to combine exponents.
3x2=312+1
3x2=312+1
Step 2.2.1.2
Write 1 as a fraction with a common denominator.
3x2=312+22
Step 2.2.1.3
Combine the numerators over the common denominator.
3x2=31+22
Step 2.2.1.4
Add 1 and 2.
3x2=332
3x2=332
3x2=332
3x2=332
Step 3
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
x2=32
Step 4
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
x=3